• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivar expressão trigonometrica

Derivar expressão trigonometrica

Mensagempor joaofonseca » Qua Nov 30, 2011 22:29

Dada a seguinte expressão:

\frac{1}{x^2}\cdot sin^2(\frac{x}{2})

Encontre a formula da derivada.

Eu fiz assim:

\left (\frac{1}{x^2} \right )' \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left (sin^2 \left (\frac{x}{2}\right)\right)'

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot \left(sin \left(\frac{x}{2}\right)\right)' \right]

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \left(\frac{x}{2}\right)' \right]

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \frac{2}{4} \right]

Será que está bem?Alguém pode conferir?
Isto de calcular a derivada complica-se quando é preciso misturar a regra do quociente, do produto e da cadeia.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivar expressão trigonometrica

Mensagempor MarceloFantini » Qui Dez 01, 2011 01:45

Está certo, mas simplifique \frac{-2x}{x^4} para \frac{-2}{x^3}, não era necessário colocar \frac{2}{4}, embora não está errado a derivada de \frac{x}{2} é \frac{1}{2}, não havia necessidade de multiplicar numerador e denominador por 2.

Poderia ter notado que \frac{1}{x^2} = x^{-2} e então (x^{-2})' = -2x^{-3} = \frac{-2}{x^{3}}. Uma forma interessante seria notar que \sin^2 \left( \frac{x}{2} \right) = \frac{1 - \cos \left( 2 \cdot \frac{x}{2} \right)}{2}, daí \left( \sin^2 \left( \frac{x}{2} \right) \right)' = \left( \frac{1 - \cos x}{2} \right)' = \frac{ \sin x}{2}.

Note que é consistente, uma vez que 2 \cdot \sin \left( \frac{x}{2} \right) \cdot \cos \left( \frac{x}{2} \right) = \sin \left( 2 \cdot \frac{x}{2} \right) = \sin x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.