por Dinhofjr » Qua Nov 09, 2011 15:33
O triângulo retângulo ABC tem hipotenusa igual a 25 e perímetro 56. A área deste triângulo é:
eu sou muito ruim em trigonometria. já tentei fazer de tudo aqui, mas acho que falta algum dado. se alguém puder me ajudar?
-
Dinhofjr
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 09, 2011 15:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Zootecnia
- Andamento: formado
por MarceloFantini » Qua Nov 09, 2011 17:21
Sejam a, b e c os lados desse triângulo, com c sendo a hipotenusa. A área será

. Pelo enunciado,

e

, de onde chegamos

. Elevando os dois lados ao quadrado, teremos

, mas pelo teorema de Pitágoras temos que

e daí

. Dividindo os dois lados por 4, teremos que

unidades de área.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Dinhofjr » Qua Nov 09, 2011 18:37
ótima explicação!! muito obrigado. tentei fazer algo parecido com oq vc fez.... mas fiquei bem longe do teu raciocino.
-
Dinhofjr
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 09, 2011 15:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Zootecnia
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites, help aqui
por Maykids » Dom Mar 20, 2011 13:00
- 3 Respostas
- 9911 Exibições
- Última mensagem por LuizAquino

Dom Mar 20, 2011 17:10
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda aqui!
por Liahtz » Sex Ago 07, 2015 17:38
- 1 Respostas
- 10909 Exibições
- Última mensagem por nakagumahissao

Sáb Ago 08, 2015 11:33
Matrizes e Determinantes
-
- ajuda aqui!
por zenildo » Seg Mai 09, 2016 01:18
- 5 Respostas
- 10423 Exibições
- Última mensagem por zenildo

Qui Mai 12, 2016 22:41
Trigonometria
-
- Auxilie aqui!!!!!
por zenildo » Dom Jun 05, 2016 12:13
- 2 Respostas
- 6939 Exibições
- Última mensagem por zenildo

Dom Jun 05, 2016 21:22
Trigonometria
-
- Corrige aqui!!
por zenildo » Dom Jun 05, 2016 21:10
- 2 Respostas
- 2314 Exibições
- Última mensagem por DanielFerreira

Seg Jun 06, 2016 00:22
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.