• Anúncio Global
    Respostas
    Exibições
    Última mensagem

fibonacci problema do seculo 12

fibonacci problema do seculo 12

Mensagempor tiagofe » Qui Mar 31, 2011 20:09

Imagem

Boa tarde pessoal, estou com um duvida que está me matando!
segue a imagem onde esta o problema.

http://postimage.org/image/drrc8lwk/

ou está em

http://www.freeimagehosting.net/image.p ... fff57c.jpg

ja tentei de todas as maneiras mas não chego a resoluçao certa, no livro a resposta da

17.1) é as torres 1 e 2 distam do lago 18 pés e 32 pés respectivamente.

17.2) alpha = 43.15º beta 82.39º

não encontro relação nenguma com a distancia 50 com a hipotenusa dos triangulos ( distancia em que os pombos percorreram.)

penso que as hipotenusas são iguais pois os pombos chegaram ao mesmo tempo.

alguem me de uma ajuda :)

Muito Obrigado.
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: fibonacci problema do seculo 12

Mensagempor FilipeCaceres » Qui Mar 31, 2011 20:25

Vou lhe dar uma dica, observe a figura abaixo (fora de escala).Como os dois pássaros tem a mesma velocidade, eles vão levar o mesmo tempo até atingir o solo, então ambos percorrem a mesma distância d. Aplicando pitágoras nos dois triângulo e igualando d, você descobrirá quanto vale x.
torres.GIF
torres.GIF (2.29 KiB) Exibido 5656 vezes


Se tiver mais alguma dúvida compartilhe conosco.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: fibonacci problema do seculo 12

Mensagempor tiagofe » Qui Mar 31, 2011 20:35

filipecaceres escreveu:Vou lhe dar uma dica, observe a figura abaixo (fora de escala).Como os dois pássaros tem a mesma velocidade, eles vão levar o mesmo tempo até atingir o solo, então ambos percorrem a mesma distância d. Aplicando pitágoras nos dois triângulo e igualando d, você descobrirá quanto vale x.
torres.GIF


Se tiver mais alguma dúvida compartilhe conosco.

Abraço.


Muito Obrigado pela rapida resposta, aqui ja é tarde e estou cansado para analisar bem o problema, mas acho que ja chego la sozinho, amanha de manha volto a força! :) muito obrigado mais uma vez

:y:
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: fibonacci problema do seculo 12

Mensagempor Elcioschin » Qui Mar 31, 2011 22:47

Existe um erro no gabarito ----> Beta ~= 65,77º
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: fibonacci problema do seculo 12

Mensagempor tiagofe » Sex Abr 01, 2011 07:25

Muito Obrigado a todos, vou postar a minha resolução os resultados batem certo mas qualquer erro que detectarem digam para eu corrigir

http://img190.imageshack.us/i/img015tr.jpg/ aqui está.

PS. desculpem a letra mas a culpa é do scanner! :$
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: fibonacci problema do seculo 12

Mensagempor Elcioschin » Sex Abr 01, 2011 12:05

Existem vários erros na sua solução: você elevou (50 - x) ao quadrado de forma indevida.

d² = 40² + x² ----> d = 1600 + x²

d² = 30² + (50 - x)² ----> d² = 900 + 2500 - 100x + x² ----> d² = 3400 - 100x + x²

1600 + x² = 3400 - 100x + x²

100x = 3400 - 1600

100x = 1800

x = 18
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: fibonacci problema do seculo 12

Mensagempor tiagofe » Sex Abr 01, 2011 13:09

Elcioschin escreveu:Existem vários erros na sua solução: você elevou (50 - x) ao quadrado de forma indevida.

d² = 40² + x² ----> d = 1600 + x²

d² = 30² + (50 - x)² ----> d² = 900 + 2500 - 100x + x² ----> d² = 3400 - 100x + x²

1600 + x² = 3400 - 100x + x²

100x = 3400 - 1600

100x = 1800

x = 18


Boa tarde Elcioschin

não entendi a parte do -100x de onde vc tirou esse valor?

Muito Obrigado.
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: fibonacci problema do seculo 12

Mensagempor FilipeCaceres » Sex Abr 01, 2011 13:15

Observe que,
(a-b)^2=a^2-2.a.b+b^2

Logo,
(50-x)^2=50^2-2.50.x+x^2
(50-x)^2=2500-100.x+x^2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59