• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logarítimo

Logarítimo

Mensagempor Adilson » Ter Ago 25, 2009 15:26

log{2}^{8\sqrt[]{2}}-2 .log{2}^{log{3}^{81}}

{2}^{\frac{7}{2}}-2 .2

olá ñ consegui saber oq faço com esse -2 antes da multiplicação,ele parece ñ se encaixar em nenhuma das propriedades de logarítimos!
A resposta do gabarito é -1/2
Por acaso existe subtração de númros de mesma base com expoentes diferentes?
Adilson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 06, 2009 00:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logarítimo

Mensagempor Molina » Ter Ago 25, 2009 23:58

Boa noite, Adilson.

Confirma, a base dos log's é 10, certo?

E mais uma duvida: o que é a segunda linha?
{2}^{\frac{7}{2}}-2 .2


Não consegui ainda.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Logarítimo

Mensagempor Molina » Qua Ago 26, 2009 00:02

Adilson escreveu:log{2}^{8\sqrt[]{2}}-2 .log{2}^{log{3}^{81}}

{2}^{\frac{7}{2}}-2 .2

olá ñ consegui saber oq faço com esse -2 antes da multiplicação,ele parece ñ se encaixar em nenhuma das propriedades de logarítimos!


Esse -2 pode ter vindo da propriedade que o expoente do logaritmando passa para frente multiplicando:

log_bA^c \Leftrightarrow c*log_bA

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Logarítimo

Mensagempor Adilson » Qui Ago 27, 2009 13:27

A base é 2 mesmo, e esta segunda linha é o resultado ao qual cheguei tentando resolver essa questão, porém ainda ñ resolvi a multiplicação, vou tentar desenvolver ela melhor agora.

log{2}^{8\sqrt[]{2}}-2 .log{2}^{log{3}^{81}} 

log{2}^{{2}^{3}}\sqrt[]{2}-2.log{2}^{log{3}^{{3}^{4}}}

ei!ainda ñ consegui fazer , porém ao desenvolver aqui parece que deu uma clareada, parece que tenho que usar a propriedade de expoente de loagarítimos , é isso?
Adilson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 06, 2009 00:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59