• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmo

logaritmo

Mensagempor IFTM2012 » Sex Abr 27, 2012 01:12

(UNI-RIO 94) Um explorador descobriu, na selva amazonica, uma
especie nova de planta e, pesquisando-a durante anos, comprovou que o
seu crescimento m´edio variava de acordo com a formula A = 40 ·(1, 1)t,
onde a altura m´edia A ´e medida em cent´?metros e o tempo t em anos.
Sabendo-se que log 2 = 0, 30 e log 11 = 1, 04, determine:
a) a altura m´edia, em cent´?metros, de uma planta dessa esp´ecie aos 3
anos de vida;
b) a idade, em anos, na qual a planta tem uma altura m´edia de 1,6 m.
IFTM2012
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Abr 26, 2012 10:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: logaritmo

Mensagempor nakagumahissao » Seg Abr 30, 2012 01:25

Resolução:

Suponho que a equação original está errada. Partirei da seguinte equação inicial para poder resolver este problema (se o enunciado estiver correto, por favor me avise):

A =40{(1,1)}^{t}

Questão a:

A = 40{(1,1)}^{3} = 53,24

Resposta da questão a = A altura média em 3 anos será de 53,24 centímetros


Questão b:

A = 1,6 metros = 160 cm - Substituindo A por este valor segue-se que:

A = 160 = 40{(1,1)}^{t} \Rightarrow \frac{16}{10} = 40{(\frac{11}{10})}^{t} \Rightarrow

\log \frac{16 \times 10}{40} = t \times \log{\frac{11}{10}} \Rightarrow

\log {16} + \log{10} - (\log{{2}^{2}} + \log{10}) = t(\log{11} - \log{10}) \Rightarrow

\Rightarrow \log {{2}^{4}} +  \log {10}- (2\log{2} + \log{10} ) = t(\log{11} - \log{10})

\Rightarrow 4 \log{2} + \log{10} - 2 \log{2} - \log{10} = t( \log{11} - \log{10}) \Rightarrow

Sabendo-se que log 2 = 0, 30 e log 11 = 1, 04, obtemos:

\Rightarrow 4 \times 0,30 + 1 - 2 \times 0,30 - 1 = t(1,04 - 1) \Rightarrow t = \frac{0,6}{0,04} \Rightarrow t = 16

Resposta da questão b é t = 16 anos.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?