• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sacar o X do ln

Sacar o X do ln

Mensagempor ToshX » Sex Jan 13, 2012 21:55

Como sacar o X da seguinte equação:

10 = x * e^(x) ???
ToshX
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jan 13, 2012 21:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sacar o X do ln

Mensagempor Renato_RJ » Sex Jan 13, 2012 23:34

Problema bem interessante, acho que não tem solução simples analiticamente, pois ficaria:

x \cdot e^x = 10 \Rightarrow \ln(x \cdot e^x) = \ln(10) \Rightarrow \ln(x) + \ln(e^x) = \ln(10)

Resolvendo:

\ln(x) + x \underbrace{\ln(e)}_{= 1} = \ln(10) \Rightarrow \ln(x) + x = \ln(10) \Rightarrow x = \ln(10) - \ln(x) = \ln(\frac{10}{x})

Se alguém souber uma maneira analítica de resolver, ficarei grato (eu usaria o método de Newton para achar uma resposta mais aproximada).

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Sacar o X do ln

Mensagempor MarceloFantini » Sáb Jan 14, 2012 13:01

Por sacar você diz isolar? Isto não é possível.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}