• Anúncio Global
    Respostas
    Exibições
    Última mensagem

qual é o valor de x na equação:

qual é o valor de x na equação:

Mensagempor aninha1701 » Qui Mar 12, 2009 11:56

{10}^{x}=4

alternativas:

a)2
b)2.log²
c)log²
d)log de 10 na base 4
e)0
aninha1701
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 12, 2009 11:43
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em ciencias biologicas
Andamento: cursando

Re: qual é o valor de x na equação:

Mensagempor Marcampucio » Qui Mar 12, 2009 12:42

Acho que a alternativa d) está invertida. Não seria x=log4?

tome logarítimos dos dois lados (escolhi a base 10):

log10^x=log4\\xlog10=log4\\log10=1\\x=log4
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: qual é o valor de x na equação:

Mensagempor Molina » Qui Mar 12, 2009 17:38

Boa tarde, Aninha.

Acho que as possíveis soluções que você postou há algum engano, pois realmente, da forma que está nenhuma delas satisfaz 10^x=4.

Como foi muito bem observado pelo nosso amigo, podemos utilizar o log para esta questão, ficando log4=x.

Ou a resposta é a letra d) pelo motivo já exposto acima ou então é a letra b), pois acho que você deve ter se confundido, querendo colocar 2.log2 (lê-se duas vezes o log de 2 na base 10).

Pois note que 10^x=4 \Rightarrow log4=x \Rightarrow log2^2=x \Rightarrow 2.log2=x

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.