• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação logaritmica

Equação logaritmica

Mensagempor joaofonseca » Qui Jun 16, 2011 14:48

Sejam as seguintes funções:

f(x)=2x-2
g(x)=log_{2}(x+2)

O gráfico destas duas funções interceptam-se em dois pontos distintos, como mostra o gráfico:
Ecra#1.jpg
Ecra#1.jpg (12.65 KiB) Exibido 2305 vezes


De uma forma algébrica/analitica, como posso encontrar os valores de x, resolvendo a equação:

2x-2=log_{2}(x+2)

Obrigado.
Editado pela última vez por joaofonseca em Qui Jun 16, 2011 20:11, em um total de 1 vez.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação logaritmica

Mensagempor Molina » Qui Jun 16, 2011 16:38

Boa tarde.


Fazendo a equação:

2x-2=log_{2}(x+2)

2^{2x-2}=x+2

\frac{2^{2x}}{2^2}=x+2

4^{x}=4x+8 \Rightarrow x = 2


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação logaritmica

Mensagempor MarceloFantini » Qui Jun 16, 2011 19:28

Falta encontrar a outra solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação logaritmica

Mensagempor joaofonseca » Qui Jun 16, 2011 20:14

Molina obrigado pela ajuda.

Mas também estava a pensar no mesmo que o MarceloFantini. E a outra solução?

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação logaritmica

Mensagempor MarceloFantini » Qui Jun 16, 2011 20:21

Apesar de ter feito a pergunta, já sabia a resposta: ela só pode ser encontrada aproximadamente, não existe solução analítica para isso. A menos que seja num curso de cálculo numérico, não pedirá as duas raízes analiticamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação logaritmica

Mensagempor joaofonseca » Qui Jun 16, 2011 20:59

Molina que propriedades dos algoritmos utilizas-te para resolver o ultimo passo:

4^x=4x+8\Leftrightarrow x=2

Obrigado novamente
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação logaritmica

Mensagempor MarceloFantini » Qui Jun 16, 2011 21:05

Sei que a pergunta foi direcionada ao Molina, mas acredito que não haja propriedade em específico, a solução deve ter sido encontrada por inspeção.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)