• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmos!!!

Logaritmos!!!

Mensagempor manuoliveira » Qui Set 30, 2010 23:34

Não estou conseguindo resolver a seguinte questão, agradeço desde já puder ajudar!

1) Sejam x e y números reais satisfazendo as equações \log_{y}x + \log_{x}y = 2 e x²y + y² = 12x. Determine o valor do produto x.y.
Resposta: 09
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Logaritmos!!!

Mensagempor Elcioschin » Sex Out 01, 2010 18:01

log[y](x) + log[x](y) = 2 -----> Condições de existência x > 0, y > 0 , x ><1 , y >< 1

log[y](x) + 1/log[y](x) = 2

{log[y](x)}² - 2*log[x](y) + 1 = 0 ----> Equação do 2º grau ----> Raiz dupla: log[y](x) = 1 ----> x = y

x²y + y² = 12x -----> x²*x + y² = 12x -----> x³ + x² = 12x ----> Dividindo por x ----> x² + x - 12 = 0 ----> Equação do 2º grau

Raízes ----> x = - 4 (não serve) e x = +3 ----> y = +3 -----> x*y = 9
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Logaritmos!!!

Mensagempor jefferson0209 » Ter Set 22, 2015 18:38

alguem me ajuda?
1)sendo log2=u e log3=v,determine:
a)log12
b)log15

2)calcula:

log 81+ log625-log100
.. 3 . . 5
jefferson0209
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Ter Set 22, 2015 15:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.