• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida exercício expressão logaritima

Dúvida exercício expressão logaritima

Mensagempor kalanicastanho » Seg Mai 30, 2016 09:30

.Olá gostaria de pedir ajuda para resolver um exercício de expressão logaritima da prova do processo seletivo do IFRS
É a seguinte questão

O valor da expressão (log{36}_{5})(log{32}_{7})(log{625}_{2})(log{343}_{6})
a)loglog{840}_{20}
b)42
c)5! RESPOSTA GABARITO
d)2(log{6}_{5}) + 5(log{2}_{7}) + 4(log{5}_{2})+ 3(log{7}_{6})
e)55

Comecei resolvendo o primeiro logaritmo porém no começo já dificultou tentei aplicar a propriedade de potência mas mesmo assim ficou ruim pra resolver, alguem poderia dizer se é necessário ou se deve e pode mudar todos logaritmos pra mesma base?
kalanicastanho
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mai 30, 2016 09:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida exercício expressão logaritima

Mensagempor nakagumahissao » Seg Mai 30, 2016 23:10

Sim, você pode mudar de base. Ficaria muito mais facil trabalhar com esses logaritmos.

\log_{5}^{36} \log_{7}^{32} \log_{2}^{625} \log_{6}^{343} = \frac{\log_{6}^{36} \log_{2}^{32} \log_{5}^{625} \log_{7}^{343}}{\log_{6}^{5} \log_{2}^{7} \log_{5}^{2} \log_{7}^{6}} =

= \frac{2 \times 5 \times 4 \times 3}{\log_{6}^{5} \log_{2}^{7} \log_{5}^{2} \log_{7}^{6}} = \frac{5!}{\frac{\log_{2}^{5}}{\log_{2}^{6}} \times \log_{2}^{7} \times \frac{\log_{2}^{2}}{\log_{2}^{5}} \times \frac{\log_{2}^{6}}{\log_{2}^{7}} } = 5!
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.