• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função logarítmica

Função logarítmica

Mensagempor zenildo » Qua Jul 15, 2015 12:26

Uma amostra do artesanato indígena que, utilizando elementos da natureza, em sua confecção, representa um pouco da expressão cultural do povo indígena brasileiro. Sabe-se que a produção de cestos de uma comunidade indígena é comercializada por uma cooperativa, cujo lucro, em milhares de reais, resultante da venda da produção de x unidades, é estimado pela função f(x)=?log?_2 (4+x)+b, sendo b uma constante real, e que não havendo produção não haverá lucro.

Com base nessa informação, determine o lucro médio na produção de cada unidade quando o lucro total for igual a R$5000,00.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: Função logarítmica

Mensagempor nakagumahissao » Qui Jul 16, 2015 14:37

Zenildo,


Poderia revisar este post. Não sei se e a função que você postou está correta e gostaria que estivesse antes de começar a explicar como se resolve.


Que equação é: f(x)=?log?_2 (4+x)+b ? (Poderia usar o Editor de Fórmulas por favor?)

Seria:

\log_2 {[(4+x) + b]}

Se for, use a seguinte sintaxe no editor de fórmulas:

\log_2 {(4+x) + b}

Ou seria:

\log_2 {(4+x)} + b

Sintaxe: \log_2 {(4+x)} + b

onde o b não faz parte do logaritmando.


Fico no aguardo.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}