• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[divisão de logaritmos de mesma base]

[divisão de logaritmos de mesma base]

Mensagempor Laio » Ter Fev 25, 2014 22:22

Travei aqui na solução deste logaritmo. Não sei o que posso fazer com essa divisão de logaritmos de mesma base. Ajuuuuuuda!



Como continuo?
Laio
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 15, 2014 19:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado

Re: [divisão de logaritmos de mesma base]

Mensagempor young_jedi » Ter Fev 25, 2014 22:52

\log_{2}(1-x)-\frac{\log(x+7)}{\log_2 4}=\log_2 2

\log_{2}(1-x)-\frac{\log(x+7)}{2}=\log_2 2

\frac{2.\log_{2}(1-x)-\log(x+7)}{2}=\log_2 2

2.\log_{2}(1-x)-\log(x+7)=2.\log_2 2

\log_{2}(1-x)^2-\log(x+7)=\log_2 2^2

\log_{2}\frac{(1-x)^2}{(x+7)}=\log_2 4

\frac{(1-x)^2}{(x+7)}=4

(1-x)^2=4(x+7)

x^2-6x-27=0

tente finalizar apartir daqui e comente qualquer duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [divisão de logaritmos de mesma base]

Mensagempor Laio » Qua Fev 26, 2014 09:37

Legal, usando Báskara, as raízes serão -3 e +9, mas apenas -3 satisfaz a condição de existência do logaritmo. Resposta:V={-3} OBRIGADO! :-D

Mas este exercício me fez pensar em outra dúvida que eu tinha:

Quando eu tenho uma equação de segundo grau tal como essa à qual você chegou, x²-6x-27=0, eu poderia muito bem passar toda a expressão para o outro lado da igualdade e inverter o sinal de todo mundo, ficando 0=-x²+6x+27. Já testei o cálculo e comprovei que isso obviamente não altera o resultado. Mas se me pedissem para desenhar um gráfico com a parábola dessa equação, no primeiro caso eu veria que a>0 e faria uma parábola aberta para cima. No segundo caso, uma parábola aberta para baixo, pois a<0. Mas isso não é possível, pois se trata da mesma equação! O que é que está errado no meu raciocínio?
Laio
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 15, 2014 19:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado

Re: [divisão de logaritmos de mesma base]

Mensagempor young_jedi » Qua Fev 26, 2014 16:36

Seu raciocinio esta correto, note que em um primeiro momento a função que você teria é esta

f(x)=x^2-6x-27

e a outra função seria

f(x)=-x^2+6x+27

são duas funções diferentes, mas que possuem as mesmas raizes, agora quando se fala em equação somente

x^2-6x-27=0

0=-x^2+6x+27

temos que essas duas equações são a mesma coisa ou seja são a mesma equação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [divisão de logaritmos de mesma base]

Mensagempor Laio » Qua Fev 26, 2014 17:13

Tá certo. O sinal só é sagrado se a equação de segundo grau for uma função no plano cartesiano. Agradeço de novo, Skywalker!
Laio
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 15, 2014 19:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D