• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Logarítmica

Inequação Logarítmica

Mensagempor crsjcarlos » Qui Dez 06, 2012 10:42

Para que valores de x, x \in [0 , 2\pi] verifica-se a desigualdade:

log_{cosx}^{(1 + 2cosx)} + log_{cosx}^{(1 + cosx)} > 1

Resposta: \frac{\pi }{3} < x < \frac{\pi }{2} ou \frac{3\pi }{2} < x < \frac{5\pi }{3}
crsjcarlos
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 05, 2012 17:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Logarítmica

Mensagempor e8group » Qui Dez 06, 2012 17:58

Pela condição de existência cos(x)> 0  \ \text{e} \ cos(x)  \neq 1 .Uma vez que cos(x) > 0   ,   cos(x) + 1 \  \text{e} \ 1 + 2cos(x) > 0 .Assim obtemos o seguinte intervalo ,

cos(x) \in (0,1) \implies  x \in (0,\pi/2) \cup (3\pi/2,2\pi) . Desenvolvendo a inequação ,

log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1  \\ \implies     log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x)) .

Assim ,


(cos(x)+1)(2 cos(x)+1) > cos(x)  \implies 2cos^2(x) + 2cos(x) + 1 > 0  \implies 2 cos(x)[cos(x)+1]> -1 .


Conclusão :

Como , 1 > Im(cos(x)) > 0 vamos ter Im(cos(x) +1) \in (1,2) .Logo ,

2 cos(x)[cos(x)+1] >  0  , \forall x  \in (0,\pi/2) \cup (3\pi/2,2\pi) e portanto 2 cos(x)[cos(x)+1] > - 1 .

Não sei como chegar no gabarito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.