• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(EEAR) Equação logaritmica

(EEAR) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:32

6-)(EEAR) a soma dos valores de x que satisfazem a equação 5^{2x}-7.5^{x}+10é:
a-)log 10
b-)log_5{10}
c-)log_5{2}+log_2{5}
d-)log_2{2}+log_2{5}
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (EEAR) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:36

Você esqueceu de igualar a zero, caso contrário é apenas uma função na variável x e existem infinitos valores que a satisfazem. Vamos rearranjar a equação:

5^{2x} - 7 \cdot 5^x +10 = 0 \rightarrow (5^x)^2 -7 \cdot 5^x + 10 = 0

Eu usei a propriedade que (a^b)^c = a^{bc}. Agora vamos fazer uma mudança de variável para que fique nítido o que você está fazendo:

5^x = a

Assim, a equação fica:

a^2 -7a +10 = 0

Que é a mesma equação do outro tópico. As respostas são a = 2 e a = 5. Porém, como fizemos a = 5^x, chegamos em:

5^x = 2 ou 5^x = 5

Tomando os logaritmos na base 5:

\log_5 (5^x) = \log_5 2 \rightarrow x \log_5 5 = \log_5 2 \rightarrow x = \log_5 2

\log_5 (5^x) = \log_5 5 \rightarrow x \log_5 5 = \log_5 2 \rightarrow x = \log_5 5

Somando:

\log_5 2 + \log_5 5 = \log_5 (5 \cdot 2) = \log_5 10

Primeiro eu usei a propriedade \log_a b^c = c \log_a b e depois \log_a b + \log_a c = \log_a (b \cdot c).

Alternativa B.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}