• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Empacada por um sinal

Empacada por um sinal

Mensagempor Fernanda Lauton » Sex Jul 02, 2010 10:08

Por tudo o que já aprendi aqui eu desenvolvi a expressão:

\log_{2}^{\sqrt[3]{\frac{4.\sqrt[2]{{x}^{2} + 1}}{\sqrt[4]{x (x +2)}}}}

chegando até

\frac{1}{3}. \left[\log_{2}^{4} + \log_{2}^{\sqrt[2]{{x}^{2} + 1} } - \frac{1}{4}. \left[\log_{2}^{x} + \log_{2}^{\left(x + 2 \right)} \right]\right]

Mas daí continuando a desenvolver o log vem a parte que eu não entendi:

\frac{1}{3}}.\left[2 - \frac{1}{2}.\log_{2}^{\left({x}^{2} + 1 \right)} - \frac{1}{4}.\left[ \log_{2}^{x} + \log_{2}^{\left(x + 2 \right)}\right]\right]

de onde surgui esse sinal negativo entre o número 2 e o \frac{1}{2} no livro está escrito assim mas eu não sei de onde ele vem :S.

Não deveria ser:

\frac{1}{3}}.\left[2 + \frac{1}{2}.\log_{2}^{\left({x}^{2} + 1 \right)} - \frac{1}{4}.\left[ \log_{2}^{x} + \log_{2}^{\left(x + 2 \right)}\right]\right] :?:

Por favor me ajudem, é só esse bendito sinal que está me empacando ;)
Fernanda lauton
Fernanda Lauton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Seg Mar 29, 2010 17:21
Localização: Minas Gerais
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: Empacada por um sinal

Mensagempor Dan » Sex Jul 02, 2010 15:56

Olá Fernanda.
Pois é, eu acho que esse sinal negativo está errado. A forma que você colocou parece certa. Eu ainda cheguei à seguinte forma, mais simplificada e correta:

\frac{2}{3}+{log}_{2}\left[ \left{(x^2 + 1)}^{\frac{1}{6}}\right]-{log}_{2}\left[ \left{(x^2 + 2x)}^{\frac{1}{12}}\right]
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Empacada por um sinal

Mensagempor Dan » Sex Jul 02, 2010 16:06

Obviamente esse seria o passo seguinte ao seu, mas eu segui um caminho diferente para chegar até aí. Então deve estar certo.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Empacada por um sinal

Mensagempor Fernanda Lauton » Sáb Jul 03, 2010 17:53

Mas como vcc chegou á:

\frac{2}{3}+{log}_{2}\left[ \left{(x^2 + 1)}^{\frac{1}{6}}\right]-{log}_{2}\left[ \left{(x^2 + 2x)}^{\frac{1}{12}}\right][/quote]

não sei sair de até onde tinha postado.
Fernanda lauton
Fernanda Lauton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Seg Mar 29, 2010 17:21
Localização: Minas Gerais
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: Empacada por um sinal

Mensagempor Dan » Sáb Jul 03, 2010 18:50

Olá Fernanda.
Isso é bem simples, veja bem.

Você parou neste ponto:

\frac{1}{3}}.\left[2 + \frac{1}{2}.\log_{2}{\left({x}^{2} + 1 \right)} - \frac{1}{4}.\left[ \log_{2}{x} + \log_{2}{\left(x + 2 \right)}\right]\right]

Agora basta multiplicar o 1/3 em tudo, e aplicar a propriedade da soma na segunda parte:

\left[\frac{2}{3}+\frac{1}{6}.{log}_{2}\left(x^2 + 1\right)\right]-\frac{1}{12}.\left[{log}_{2}\left x.(x + 2)\right]

Agora, basta aplicar a propriedade dos expoentes e multiplicar o x.(x+2) na segunda parte:

\frac{2}{3}+{log}_{2}\left[ \left{(x^2 + 1)}^{\frac{1}{6}}\right]-{log}_{2}\left[ \left{(x^2 + 2x)}^{\frac{1}{12}}\right]
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Empacada por um sinal

Mensagempor Fernanda Lauton » Sáb Jul 03, 2010 22:28

Obrigada ;)
cada vez mais me familiarizo com a matemática ^^
Fernanda lauton
Fernanda Lauton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Seg Mar 29, 2010 17:21
Localização: Minas Gerais
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D