por zenildo » Qua Jul 15, 2015 12:26
Uma amostra do artesanato indígena que, utilizando elementos da natureza, em sua confecção, representa um pouco da expressão cultural do povo indígena brasileiro. Sabe-se que a produção de cestos de uma comunidade indígena é comercializada por uma cooperativa, cujo lucro, em milhares de reais, resultante da venda da produção de x unidades, é estimado pela função f(x)=?log?_2 (4+x)+b, sendo b uma constante real, e que não havendo produção não haverá lucro.
Com base nessa informação, determine o lucro médio na produção de cada unidade quando o lucro total for igual a R$5000,00.
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
por nakagumahissao » Qui Jul 16, 2015 14:37
Zenildo,
Poderia revisar este post. Não sei se e a função que você postou está correta e gostaria que estivesse antes de começar a explicar como se resolve.
Que equação é: f(x)=?log?_2 (4+x)+b ? (Poderia usar o Editor de Fórmulas por favor?)
Seria:
![\log_2 {[(4+x) + b]} \log_2 {[(4+x) + b]}](/latexrender/pictures/773d49e73694f0a117bb677727e1e209.png)
Se for, use a seguinte sintaxe no editor de fórmulas:
\log_2 {(4+x) + b}
Ou seria:

Sintaxe: \log_2 {(4+x)} + b
onde o b não faz parte do logaritmando.
Fico no aguardo.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Logarítmica
por OtavioBonassi » Qui Jan 06, 2011 21:58
- 12 Respostas
- 7648 Exibições
- Última mensagem por OtavioBonassi

Sex Jan 07, 2011 23:42
Funções
-
- Função Logaritmica
por nessitahfl » Qui Abr 17, 2014 11:06
- 3 Respostas
- 2452 Exibições
- Última mensagem por nessitahfl

Ter Abr 22, 2014 10:48
Funções
-
- Função Logarítmica
por Carlos28 » Sex Mar 13, 2015 10:02
- 2 Respostas
- 2354 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:36
Logaritmos
-
- Função Logarítmica - Urgente!
por Asustek27 » Dom Mar 14, 2010 19:24
- 2 Respostas
- 2570 Exibições
- Última mensagem por Asustek27

Seg Mar 15, 2010 15:25
Logaritmos
-
- (AMAN) função logaritmica
por natanskt » Sex Out 29, 2010 10:27
- 1 Respostas
- 1457 Exibições
- Última mensagem por DanielFerreira

Qui Nov 18, 2010 17:46
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.