• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exponenciais

Exponenciais

Mensagempor Souo » Ter Jun 30, 2015 01:42

A soma das raizes da equaç?o 10^{2x} - 4.10^{x} + 3 = 0 é:


A) 4
B) 1 + log3
C) log2 + log3
D) log5
E) log3


N?o consegui chegar no resultado, alguem pode me ajudar?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exponenciais

Mensagempor nakagumahissao » Qui Jul 02, 2015 10:37

10^{2x} - 4.10^{x} + 3 = 0

Pelas propriedades da potenciação, podemos reescrever a equação acima da seguinte forma:

[1] \left(10^{x} \right)^2 - 4.10^{x} + 3 = 0

Agora, podemos fazer a seguinte substituição:

[2] y = 10^{x}

Substituindo [2] em [1], tem-se que:

y^2 - 4y + 3 = 0

\Delta = b^2 - 4ac = 16 - 12 = 4

y = \frac{-b \pm \sqrt[]{\Delta}}{2a} = \frac{4 \pm 2}{2}

y = 3

e

y = 1

Utilizando estes valores obtidos em [1] acima, tem-se que

a) Para y = 3:

y = 3 = 10^{x} \Leftrightarrow \log {3} = \log {10^{x}} \Leftrightarrow   \log {3} = x\log {10} \Leftrightarrow  x= \log {3}

e

b) Para y = 1:

y = 1 = 10^{x} \Leftrightarrow \log {1} = \log {10^{x}} \Leftrightarrow   \log {1} = x\log {10} \Leftrightarrow  x= 0


PORTANTO, a soma das raízes da equação dada será: 1 + log(3), ou seja, a resposta é a letra (B)
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Exponenciais

Mensagempor Souo » Qui Jul 02, 2015 22:53

nakagumahissao escreveu:10^{2x} - 4.10^{x} + 3 = 0

Pelas propriedades da potenciação, podemos reescrever a equação acima da seguinte forma:

[1] \left(10^{x} \right)^2 - 4.10^{x} + 3 = 0

Agora, podemos fazer a seguinte substituição:

[2] y = 10^{x}

Substituindo [2] em [1], tem-se que:

y^2 - 4y + 3 = 0

\Delta = b^2 - 4ac = 16 - 12 = 4

y = \frac{-b \pm \sqrt[]{\Delta}}{2a} = \frac{4 \pm 2}{2}

y = 3

e

y = 1

Utilizando estes valores obtidos em [1] acima, tem-se que

a) Para y = 3:

y = 3 = 10^{x} \Leftrightarrow \log {3} = \log {10^{x}} \Leftrightarrow   \log {3} = x\log {10} \Leftrightarrow  x= \log {3}

e

b) Para y = 1:

y = 1 = 10^{x} \Leftrightarrow \log {1} = \log {10^{x}} \Leftrightarrow   \log {1} = x\log {10} \Leftrightarrow  x= 0


PORTANTO, a soma das raízes da equação dada será: 1 + log(3), ou seja, a resposta é a letra (B)


Entendi, mas o gabarito diz que é a letra E, esta errado?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exponenciais

Mensagempor nakagumahissao » Sex Jul 03, 2015 21:24

Desculpe-me, 0 + log 3 = log 3 e a resposta é a letra (e) mesmo
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.