por Lana Brasil » Seg Jul 21, 2014 22:12
Boa Noite.
Comecei a resolver esse exercício e cheguei num sistema, ficou muito grande. Desisti porque achei que fiz errado. Podem me ajudar, por favor? Obrigada pela ajuda!!
Se x e y são números naturais satisfazendo log(8) x + log(4)y² = 6 e log(4)x² + log(8)y = 10, qual o valor de ?xy? (os números entre parêntesis são as bases).
-
Lana Brasil
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Dom Abr 07, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Ter Jul 22, 2014 00:57
Uma forma ...
Suponha que

então

.Aplicamos o logaritmo (de base 8) em ambos os membros teremos

.
Agora 'somamos' as equações ...

.
Usando (*) e (**) nós temos

.
Fazendo mudança de base (para 2 ) ...

.
Tente avançar
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Pessoa Estranha » Ter Jul 22, 2014 01:10
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Ter Jul 22, 2014 01:45
Hahhah sem problemas amigo(a) , isso já aconteceu muito comigo(realmente é difícil apagar dps de tanto esforço p/ redigir) , você que se engana ... (ainda não sou tão rápido no sistema LaTeX) . Não precisa pedir desculpas , novas opiniões , ajudas são sempre bem vindas !! Bem não chequei o resultado , parece que você preferiu encontrar primeiro

...vejamos
Partindo dá última eq. temos

então
![log_2(L)[\frac{1}{3} + 1] =8 log_2(L)[\frac{1}{3} + 1] =8](/latexrender/pictures/befba3c0a81192a150c8f71a8491b0e7.png)
então

e assim

.
Parece que deu certo , ou então nós 2 erramos .
Abraço
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Lana Brasil » Ter Jul 22, 2014 11:48
santhiago escreveu:Hahhah sem problemas amigo(a) , isso já aconteceu muito comigo(realmente é difícil apagar dps de tanto esforço p/ redigir) , você que se engana ... (ainda não sou tão rápido no sistema LaTeX) . Não precisa pedir desculpas , novas opiniões , ajudas são sempre bem vindas !! Bem não chequei o resultado , parece que você preferiu encontrar primeiro

...vejamos
Partindo dá última eq. temos

então
![log_2(L)[\frac{1}{3} + 1] =8 log_2(L)[\frac{1}{3} + 1] =8](/latexrender/pictures/befba3c0a81192a150c8f71a8491b0e7.png)
então

e assim

.
Parece que deu certo , ou então nós 2 erramos .
Abraço
Nossa adorei vcs 2!! Obrigada pela grande ajuda e boa vontade. Abraços!!!
-
Lana Brasil
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Dom Abr 07, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Lana Brasil » Ter Jul 22, 2014 11:48
Nossa adorei vcs 2!! Obrigada pela grande ajuda e boa vontade. Abraços!!!
-
Lana Brasil
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Dom Abr 07, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Calculo de logaritmo) Encontre o valor de y
por andersontricordiano » Qua Mar 23, 2011 13:39
- 1 Respostas
- 1876 Exibições
- Última mensagem por Molina

Qua Mar 23, 2011 15:07
Logaritmos
-
- [Logaritmo] Como encontrar o valor de x na munheca?
por carvalhothg » Ter Set 13, 2011 15:43
- 6 Respostas
- 3397 Exibições
- Última mensagem por LuizAquino

Qua Set 14, 2011 00:06
Logaritmos
-
- [Derivada de Logaritmo Natural] Exercício de logaritmo
por Ronaldobb » Dom Out 28, 2012 17:40
- 1 Respostas
- 2360 Exibições
- Última mensagem por MarceloFantini

Dom Out 28, 2012 18:16
Cálculo: Limites, Derivadas e Integrais
-
- [logaritmo]dúvida sobre logaritmo
por tigocma » Ter Mar 25, 2014 22:43
- 0 Respostas
- 1737 Exibições
- Última mensagem por tigocma

Ter Mar 25, 2014 22:43
Logaritmos
-
- [Valor de Mercadoria] A partir do valor total de venda
por Gerson Belini » Qua Out 02, 2013 02:17
- 0 Respostas
- 3739 Exibições
- Última mensagem por Gerson Belini

Qua Out 02, 2013 02:17
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.