• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo em função de n

Logaritmo em função de n

Mensagempor Lana Brasil » Seg Jul 21, 2014 22:06

Boa Noite.
Não consegui chegar na resposta, tudo que fiz ficou diferente. Podem me ajudar, por favor?
Sabendo que 6^n = 2, identifique a alternativa que representa o valor de Log(2) 24 (base 2) em função de n:
a) (1+2n)/n
b) (2n-1)/n
c) 3n – 1/n
d) (n+2)/n
e) n-2
Agradeço desde já.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Logaritmo em função de n

Mensagempor e8group » Ter Jul 22, 2014 00:27

Multiplicando ambos lados por 4^n tem-se

4^n \cdot 6^n   = (4\cdot 6)^n = 24^n =  4^n \cdot 2 = (2^2)^n \cdot 2 = 2^{2n} \cdot 2 = 2 ^{2n+1} .

Aplicando log de base 2 resulta

log_2(24^n) = log_2(2^{2n+1})   \iff n \cdot log_2(24) =  (2n+1 ) \cdot log_2 (2)  \iff  \hdots .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Logaritmo em função de n

Mensagempor Pessoa Estranha » Ter Jul 22, 2014 00:32

Olá! Tenho uma sugestão também...

Temos

{6}^{n} = 2

Queremos

log_2{24}

Observe que

log_2{24} = log_2{6.4} = log_2{6} + log_2{4} \rightarrow n.log_2{24} = n.log_2{6} + n.log_2{4}

Daí,

n.log_2{24} = log_2{{6}^{n}} + n.2 \rightarrow log_2{24} = \frac{(1 + 2n)}{n}
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.