• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor SCHOOLGIRL+T » Sex Nov 23, 2012 19:11

Me ajudem nesse logaritmo?
log(8)+log(35)-log(28)
O que eu faço primeiro? A subtração dos logaritmos ou a soma? E como eu faço?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor DanielFerreira » Sex Nov 23, 2012 20:29

\\ \log 8 + \log 35 - \log 28 = 
\\\\ \log 2^3 + \log (7 \cdot 5) - \log (2^2 \cdot 7) = 
\\\\ 3 \cdot \log 2 + \log 7 + \log 5 - (\log 2^2 + \log 7) = 
\\\\ 3 \cdot \log 2 + \cancel{\log 7} + \log 5 - 2 \cdot \log 2 \cancel{- \log 7} = 
\\\\ \log 2 + \log 5 =
\\\\ \log (2 \cdot 5) =
\\\\ \log 10 =
\\\\ \boxed{1}
Editado pela última vez por DanielFerreira em Sex Nov 23, 2012 20:59, em um total de 1 vez.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Logaritmo]

Mensagempor SCHOOLGIRL+T » Sex Nov 23, 2012 20:43

danjr5 escreveu:\\ \log 8 + \log 35 - \log 28 = \\\\ \log 2^3 + \log (7 \cdot 5) - \log (2^3 \cdot 7) = \\\\ \log 2^3 + \log 7 + \log 5 - (\log 2^3 + \log 7) = \\\\ \cancel{\log 2^3} + \cancel{\log 7} + \log 5 \cancel{- \log 2^3} \cancel{- \log 7} = \\\\ \boxed{\log 5}


As alternativas -5, 5, 1, 10, -16. O q eu marco?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor DanielFerreira » Sex Nov 23, 2012 21:01

Cometi um erro! :-D

Resolução já editada, ok? ;)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: