• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]-UFLA-MG

[Logaritmo]-UFLA-MG

Mensagempor SCHOOLGIRL+T » Qui Nov 15, 2012 17:44

Em uma substância radioativa, o número N de átomos de um isótopo de um certo elemento é reduzido à metade após um período de 5000 anos. Ou seja, se t representa o tempo medido em unidades de 5000 anos, e No corresponde ao número de átomos desse isótopo no instante t=0, então N={N}_{0}.{2}^{-1}. Se a substância apresenta 100.000 átomos desse isótopo no instante t=o, então o número de anos necessários para que o número desses átomos seja igual a 100, admitindo {log}_{10}2 = 0,3, é?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]-UFLA-MG

Mensagempor e8group » Sex Nov 23, 2012 09:34

N descresce ao passar do tempo , no instante t = 0 teremos .

Após t unidades de tempo , temos que N = 100 . Qual valor que t deve assumir para termos N = 100 , sabendo que ?

Basta resolver ,


100 = 10^5 \cdot 2^{-t} . Aplicando logaritmo nos dois lados , vem que log(100) = log(10^2) =  2 log(10) =  2  =  log(10^5 \cdot 2^{-t} ) =   log(10^5) + log(2^{-t} ) =   5 log(10) -t\cdot log(2)  =  5  - 0,3 t =  2 .


Somando - 5 dos dois lados e após isto mutiplicando ambos lados por- 1/0,3 , segue que t = \frac{3}{0,3}  =   10 .

Como t é medido em unidades 5000 anos , concluímos que t = 10 \cdot 5000 \text{anos} = 50.000 \text{anos} .

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]-UFLA-MG

Mensagempor SCHOOLGIRL+T » Sex Nov 23, 2012 18:51

santhiago escreveu:N descresce ao passar do tempo , no instante t = 0 teremos .

Após t unidades de tempo , temos que N = 100 . Qual valor que t deve assumir para termos N = 100 , sabendo que ?

Basta resolver ,


100 = 10^5 \cdot 2^{-t} . Aplicando logaritmo nos dois lados , vem que log(100) = log(10^2) =  2 log(10) =  2  =  log(10^5 \cdot 2^{-t} ) =   log(10^5) + log(2^{-t} ) =   5 log(10) -t\cdot log(2)  =  5  - 0,3 t =  2 .


Somando - 5 dos dois lados e após isto mutiplicando ambos lados por- 1/0,3 , segue que t = \frac{3}{0,3}  =   10 .

Como t é medido em unidades 5000 anos , concluímos que t = 10 \cdot 5000 \text{anos} = 50.000 \text{anos} .

Comente qualquer dúvida .

Entendi direitinho. Obrigada.
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.