• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor thamysoares » Sex Nov 16, 2012 21:41

Assumindo que log(2)=0,3 e log(3)=0,48, em que log representa o logaritmo decimal, encontre o menor número inteiro n tal que {0,81}^{n}\leq0,05.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor young_jedi » Sáb Nov 17, 2012 11:45

aplicando o logaritmo na equação

log(0,81)^n\leq log(0,05)

n.log\left(\frac{81}{100}\right)\leq log\left(\frac{5}{100}\right)

n.(log81-log100)\leq log5-log100


n.(log3^4-log10^2)\leq log\frac{10}{2}-log100

n.(4.log3-2.log10)\leq log10-log2-log10^2

n.(4.0,48-2.1)\leq 1-0,3-2

-0,08n\leq -1,3

multiplicando a equação por -1

0,08n\geq 1,3

n\geq \frac{1,3}{0,08}

n\geq 16,25

logo o menor valor de n é igual a 17
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}