por thamysoares » Sex Nov 16, 2012 14:13
-
thamysoares
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Nov 14, 2012 19:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 14:52
a equação é


mais repare que

então

simplificando

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por thamysoares » Sex Nov 16, 2012 15:10
young_jedi escreveu:a equação é


mais repare que

então

simplificando

Obigada, eu entendi o procedimento até aqui. Mas, como continua?
-
thamysoares
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Nov 14, 2012 19:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 15:20
daqui em diante não encontrei nenhuma maneria de simpificar mais
poderia ficar

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por thamysoares » Sex Nov 16, 2012 15:42
young_jedi escreveu:daqui em diante não encontrei nenhuma maneria de simpificar mais
poderia ficar

As alternativas são 0, 1, 2 e log

=s
-
thamysoares
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Nov 14, 2012 19:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 16:39
não encontrei nenhuma maneira de chegar a uma destas alternativas...
verifique se o enunciado é este mesmo que voce postou, se não tem nada mais informando no exercicio
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por thamysoares » Sex Nov 16, 2012 18:23
young_jedi escreveu:não encontrei nenhuma maneira de chegar a uma destas alternativas...
verifique se o enunciado é este mesmo que voce postou, se não tem nada mais informando no exercicio
Não vejo qual é o problema... Esta é uma questão da UFOP-MG e o enunciado diz somente "Ao simplificar a expressão obtém-se". Acabei de verificar e eu digitei corretamente a expressão. =/
-
thamysoares
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Nov 14, 2012 19:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 19:39
tem como voce me passar um link com a questão?
ai eu do uma olhada
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por thamysoares » Sex Nov 16, 2012 20:13
young_jedi escreveu:tem como voce me passar um link com a questão?
ai eu do uma olhada
Desculpe, não encontrei na internet. Ela está na minha apostila de matemática feita pela minha própria escola. Mas ela está exatamente assim:
(UFOP-MG)Ao simplificar a expressão
![log(1-{a}^{3})-log(1-a)-log[(1+a)+1] log(1-{a}^{3})-log(1-a)-log[(1+a)+1]](/latexrender/pictures/7246a6235c5d971c4218c27b4512f88a.png)
obtém-se:
a) 0
b) 1
c) 2
d)

A não ser que contenha algum erro de digitação na apostila.
-
thamysoares
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Nov 14, 2012 19:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 21:06
obrigado tamysoares
verifiquei a questão e realmente não consegui chegar em nenhuma das respostas, talvez tenha algo que agente não esteja conseguindo visualizar, mas o mais provavel é que exista algum erro de digitação em sua apostila, se tiver como voce conferir com o pessoal que faz a apostila ou com algum professor é melhor.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por thamysoares » Sáb Nov 17, 2012 09:36
young_jedi escreveu:obrigado tamysoares
verifiquei a questão e realmente não consegui chegar em nenhuma das respostas, talvez tenha algo que agente não esteja conseguindo visualizar, mas o mais provavel é que exista algum erro de digitação em sua apostila, se tiver como voce conferir com o pessoal que faz a apostila ou com algum professor é melhor.
ok, muito obrigada =D
-
thamysoares
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Nov 14, 2012 19:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada de Logaritmo Natural] Exercício de logaritmo
por Ronaldobb » Dom Out 28, 2012 17:40
- 1 Respostas
- 2362 Exibições
- Última mensagem por MarceloFantini

Dom Out 28, 2012 18:16
Cálculo: Limites, Derivadas e Integrais
-
- [logaritmo]dúvida sobre logaritmo
por tigocma » Ter Mar 25, 2014 22:43
- 0 Respostas
- 1739 Exibições
- Última mensagem por tigocma

Ter Mar 25, 2014 22:43
Logaritmos
-
- Logaritmo
por JailsonJr » Sex Mai 21, 2010 05:11
- 3 Respostas
- 2542 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 17:33
Logaritmos
-
- Logaritmo (UF-CE)
por JailsonJr » Sáb Mai 22, 2010 04:56
- 6 Respostas
- 4995 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:32
Logaritmos
-
- Logaritmo
por nan_henrique » Sex Jul 09, 2010 18:38
- 1 Respostas
- 2170 Exibições
- Última mensagem por Elcioschin

Sex Jul 09, 2010 19:42
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.