• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor JU201015 » Qui Nov 15, 2012 12:29

Gostaria de saber se minha resolução está correta.
{({log}_{2}x)}^{2}-2{log}_{2}x-8\geq0
{k}^{2}-2k-8\geq0
k={log}_{2}x
x={2}^{k}
Se k = 4, então:
x={2}^{4}
x=16
E se k = -2, então:
x={2}^{k}
x={2}^{-2}
x=\frac{1}{4}
Está correto?
Estou muito confusa =s
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor DanielFerreira » Qui Nov 15, 2012 13:03

JU201015,
bom dia!
Sua resolução está incompleta! Faltou estudar o sinal.
Se, em vez de \boxed{\geq} tivéssemos \boxed{=} sua resposta estaria certa.

S = \left \{ x \in \mathbb{R} / x \leq \frac{1}{4} \,\, \textup{ou} \,\, x \geq 16 \right \}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Qui Nov 15, 2012 14:25

danjr5 escreveu:JU201015,
bom dia!
Sua resolução está incompleta! Faltou estudar o sinal.
Se, em vez de \boxed{\geq} tivéssemos \boxed{=} sua resposta estaria certa.

S = \left \{ x \in \mathbb{R} / x \leq \frac{1}{4} \,\, \textup{ou} \,\, x \geq 16 \right \}

Obrigada^^
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor DanielFerreira » Qui Nov 15, 2012 14:52

De nada!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)