• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor JU201015 » Ter Nov 13, 2012 21:22

Me digam se resolvi corretamente?
{log}_{4}(3{x}^{2}-11)-{log}_{4}(3x+1)=1
{log}_{4}\frac{3{x}^{2}-11}{3x+1}=1
\frac{3{x}^{2}-11}{3x+1}=4
3{x}^{2}-11=12x+4
3{x}^{2}-12x-15=0
x=5 e x=-1
Condição de existência:
3x+1>0
3x>-1
x>-1/3
Então x = 5
Obs: não consegui fazer a condição de existência de "3x²-11" !!
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor e8group » Ter Nov 13, 2012 23:40

Estar correta sim . Perceba que 3x^2 - 11 > 0 , somando 11 ambos lados vamos obter 3 x^2 > 11 , multiplicando por 1/3 segue que x^2 > 11/3 e finalmente elevando ambos lados a 1/2 , (x^2)^{1/2}  >  (11/3)^{1/2}   <  |x| que nos leva a \begin{cases} x>  \sqrt{11/3} \\ x> - \sqrt{11/3} \end{cases} .

Portanto resolva a ultima equação com estas restrições .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]

Mensagempor JU201015 » Qua Nov 14, 2012 20:26

santhiago escreveu:Estar correta sim . Perceba que 3x^2 - 11 > 0 , somando 11 ambos lados vamos obter 3 x^2 > 11 , multiplicando por 1/3 segue que x^2 > 11/3 e finalmente elevando ambos lados a 1/2 , (x^2)^{1/2}  >  (11/3)^{1/2}   <  |x| que nos leva a \begin{cases} x>  \sqrt{11/3} \\ x> - \sqrt{11/3} \end{cases} .

Portanto resolva a ultima equação com estas restrições .


Sua resposta foi muito boa!Muito obrigada^^
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}