• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor JU201015 » Ter Nov 13, 2012 21:22

Me digam se resolvi corretamente?
{log}_{4}(3{x}^{2}-11)-{log}_{4}(3x+1)=1
{log}_{4}\frac{3{x}^{2}-11}{3x+1}=1
\frac{3{x}^{2}-11}{3x+1}=4
3{x}^{2}-11=12x+4
3{x}^{2}-12x-15=0
x=5 e x=-1
Condição de existência:
3x+1>0
3x>-1
x>-1/3
Então x = 5
Obs: não consegui fazer a condição de existência de "3x²-11" !!
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor e8group » Ter Nov 13, 2012 23:40

Estar correta sim . Perceba que 3x^2 - 11 > 0 , somando 11 ambos lados vamos obter 3 x^2 > 11 , multiplicando por 1/3 segue que x^2 > 11/3 e finalmente elevando ambos lados a 1/2 , (x^2)^{1/2}  >  (11/3)^{1/2}   <  |x| que nos leva a \begin{cases} x>  \sqrt{11/3} \\ x> - \sqrt{11/3} \end{cases} .

Portanto resolva a ultima equação com estas restrições .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]

Mensagempor JU201015 » Qua Nov 14, 2012 20:26

santhiago escreveu:Estar correta sim . Perceba que 3x^2 - 11 > 0 , somando 11 ambos lados vamos obter 3 x^2 > 11 , multiplicando por 1/3 segue que x^2 > 11/3 e finalmente elevando ambos lados a 1/2 , (x^2)^{1/2}  >  (11/3)^{1/2}   <  |x| que nos leva a \begin{cases} x>  \sqrt{11/3} \\ x> - \sqrt{11/3} \end{cases} .

Portanto resolva a ultima equação com estas restrições .


Sua resposta foi muito boa!Muito obrigada^^
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?