por Thulio_Parazi » Sex Abr 13, 2012 11:12
O conjunto-imagem de

, denominado cosseno hiperbólico é :
Como eu faço para resolver esse tipo de questão?
Resolvo utilizando logaritmo? E o que é cosseno hiperbólico?
-
Thulio_Parazi
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qui Abr 05, 2012 11:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por fraol » Sex Abr 13, 2012 20:52
As imagens de

e de

são os reais maiores do que 0,

, e portanto uma função que seja a soma de

com

também é maior do que 0,

.
Para determinar o intervalo real da imagem você precisa determinar qual é o menor valor da função.
Agora, uma dica:

e

são inversos um do outro e o menor valor da soma de um número com o seu inverso ocorre quando esse número é igual a 1.
Veja se consegue continuar a resolver a questão.
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Thulio_Parazi » Seg Abr 16, 2012 09:29
fraol escreveu:As imagens de

e de

são os reais maiores do que 0,

, e portanto uma função que seja a soma de

com

também é maior do que 0,

.
Para determinar o intervalo real da imagem você precisa determinar qual é o menor valor da função.
Agora, uma dica:

e

são inversos um do outro e o menor valor da soma de um número com o seu inverso ocorre quando esse número é igual a 1.
Veja se consegue continuar a resolver a questão.
.
Não entendi nada e não consigui resolver não.
-
Thulio_Parazi
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qui Abr 05, 2012 11:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Thulio_Parazi » Seg Abr 16, 2012 09:33
Não entendi nada e não consigui resolver não.
-
Thulio_Parazi
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qui Abr 05, 2012 11:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por fraol » Qua Abr 18, 2012 22:26
Vimos no começo da minha postagem que a imagem da soma das funções são os reais positivos. Estamos querendo saber se há alguma restrição nesse conjunto. Então resolvemos analisar o menor valor da função. Procurei um caminho intuitivo - poderíamos ir por caminhos mais formais, mas não é necessário aqui. Então vamos continuar:
Agora, uma dica:

e

são inversos um do outro e o menor valor da soma de um número com o seu inverso ocorre quando esse número é igual a 1.
Por exemplo,

,

e assim por diante. Ou seja o menor valor da soma de um número por seu inverso ocorre quando o número é igual a 1.
Assim

deve ser igual a 1

.
Com isto sabemos que o menor da função dada ocorre para

.
Substituindo esse x na função original:

.
Com isso a imagem da função é o conjunto dos números reais maiores do que ou igual a 1, isto é o conjunto

.
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão CEFET-MG 2012
por Thulio_Parazi » Qui Abr 05, 2012 13:48
- 5 Respostas
- 4543 Exibições
- Última mensagem por fraol

Ter Abr 10, 2012 20:02
Trigonometria
-
- Questão CEFET-MG graduação 2012
por Thulio_Parazi » Qui Abr 05, 2012 11:24
- 1 Respostas
- 2009 Exibições
- Última mensagem por fraol

Sex Abr 06, 2012 20:54
Trigonometria
-
- cefet-mg 2012
por Thulio_Parazi » Ter Abr 10, 2012 09:55
- 1 Respostas
- 1497 Exibições
- Última mensagem por MarceloFantini

Ter Abr 10, 2012 21:12
Trigonometria
-
- cefet-mg 2012 log
por Thulio_Parazi » Ter Abr 10, 2012 14:37
- 5 Respostas
- 3505 Exibições
- Última mensagem por Thulio_Parazi

Qui Abr 12, 2012 09:26
Logaritmos
-
- Questão 27 do CEFET MG 2007
por Eduardo Goncalves » Sex Fev 10, 2012 10:41
- 5 Respostas
- 7521 Exibições
- Última mensagem por LuizAquino

Sáb Fev 11, 2012 12:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.