• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Expressão Logaritmica]

[Expressão Logaritmica]

Mensagempor paola-carneiro » Dom Abr 08, 2012 09:15

A questão é essa:
Calcule o valor de:
A={log}_{4}({log}_{2}16)-{log}_{2} ({log}_{3}81)+ {log}_{5}25 . {log}_{0,1}0,01

Tentei resolver, e deu isso aqui:
{log}_{4}4 - {log}_{2}4 + 2.2
1 - 2 + 2.2
1-2+4
1+2
3


A resposta final deu igual ao do livro. Porém gostaria de saber se essa maneira de resolver está correta. Se não tiver, por favor me corrijam.
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Expressão Logaritmica]

Mensagempor fraol » Dom Abr 08, 2012 19:06

Os passos e a sua resposta estão corretos.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}