• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule m na equação abaixo

Calcule m na equação abaixo

Mensagempor andersontricordiano » Qui Jan 12, 2012 13:06

Para que valores de m a equação {-x}^{2}+({log}_{3}m)x-\frac{1}{4}=0, na variável x apresenta duas raízes?

Resposta:

0<m\leq\frac{1}{3} ou m\geq3
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule m na equação abaixo

Mensagempor ant_dii » Qui Jan 12, 2012 14:32

Faça assim...
Primeiro escreva A=\log_3m.

Daí
-x^2+Ax-\frac{1}{4}=0.

Por Bhaskara, teremos

x=\frac{-A \pm \sqrt{A^2-4(-1)\left(\frac{-1}{4}\right)}}{-2} \Rightarrow x=\frac{A \mp \sqrt{A^2-1}}{2}

Esta equação somente terá duas equações quando
A^2-1\geq 0 de onde \sqrt{A^2} \geq \sqrt{1} \Rightarrow |A| \geq 1 que implica em

A \geq 1 \Rightarrow \log_3m\geq 1  \Rightarrow 3^{\log_3m} \geq 3^1 \Rightarrow m\geq 3

ou
-A \geq 1 \Rightarrow A \leq -1 \Rightarrow \log_3m \leq -1\Rightarrow 3^{\log_3m} \leq 3^{-1} \Rightarrow m\leq \frac{1}{3}.

Como \log é definido somente para números positivos deve-se ter 0<m.

Portanto, 0<m\leq \frac{1}{3} ou m\geq 3.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)