por my2009 » Sex Jan 28, 2011 21:28
Se o par de números reais(x;y) é a solução do sistema
x . y = 3
então o valor de x+ y é ?

-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por 0 kelvin » Sáb Jan 29, 2011 18:57
Uma das formas é mudar a base 9 pra base 3. Mas como

, dá pra fazer
![\log_3{\sqrt[2]{y}} \log_3{\sqrt[2]{y}}](/latexrender/pictures/907022fd51d6840811ae6a452c6db3e2.png)
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Mackenzie) P.A. com P.G.
por Rafael16 » Sáb Ago 04, 2012 14:19
- 3 Respostas
- 10066 Exibições
- Última mensagem por MarceloFantini

Qui Set 13, 2012 10:20
Progressões
-
- Mackenzie
por Maria Livia » Qua Fev 27, 2013 22:29
- 1 Respostas
- 33665 Exibições
- Última mensagem por Cleyson007

Qua Fev 27, 2013 22:41
Geometria Espacial
-
- (MACKENZIE-SP)
por Thiago 86 » Qua Mar 27, 2013 23:23
- 4 Respostas
- 3198 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 06, 2013 21:03
Inequações
-
- Questão (MACKENZIE)
por Carolziiinhaaah » Qua Jun 16, 2010 12:04
- 1 Respostas
- 3441 Exibições
- Última mensagem por Elcioschin

Qua Jun 16, 2010 13:32
Progressões
-
- Questão da MACKENZIE
por Kelvin Brayan » Dom Mar 27, 2011 16:18
- 2 Respostas
- 8325 Exibições
- Última mensagem por Kelvin Brayan

Dom Mar 27, 2011 16:34
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.