• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função] Determinar função

[Função] Determinar função

Mensagempor migvas99 » Seg Out 22, 2012 06:25

1. Na seguinte tabela encontram-se as temperaturas maxima e mnima diarias (aproxi-
madamente) durante 6 dias. Assume-se que as temperaturas maximas foram regis-
tadas sempre as 16h e as mnimas sempre as 4h.

Dia 1 2 3 4 5 6
Temperatura mnima 14 16 14 12 14 16
Temperatura maxima 28 23 20 19 20 23

(a) Considere que as temperaturas maximas se adequam nestes dias a uma func~ao
trigonometrica M(t) e que as temperaturas mnimas se adequam a uma func~ao
quadratica m(t). Determine duas func~oes M(t) e m(t) coerentes com os dados
do problema (n~ao esquecer as horas a que estas temperaturas s~ao veri cadas).

(b) Determine uma func~ao que oscile entre os valores dados, ou seja, que tenha apro-
ximadamente os valores maximos e mnimos indicados as horas correspondentes
(maximos coincidem com M(t) e mnimos com m(t)).


Boas.

Tenho este exercício para entregar esta semana e não estou a conseguir fazer a alínea b. A primeira alínea é simples, consegui fazer e sei que está bem, mas a b) não estou mesmo a ver como hei-de chegar à função, pois nem sei que tipo de função é... No entanto, acho que não será nada de muito difícil, simplesmente não estou a conseguir chegar lá. Alguém me é capaz de apontar no caminho certo ou ajudar a fazer este exercício?

Obrigado desde já ;)

Cumprimentos
migvas99
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Out 08, 2012 14:21
Formação Escolar: SUPLETIVO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}