• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequações modulares

inequações modulares

Mensagempor Alerecife » Ter Set 25, 2012 22:37

como chego ao resultado dessa inequação?
\left|5x-3 \right|\prec 12


uma vez que os resultados de x são -1, 0,+1, 2
e não x\prec3

PELA ATENÇÃO OBRIGADO!
Alerecife
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Set 04, 2012 12:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: cursando

Re: inequações modulares

Mensagempor MarceloFantini » Ter Set 25, 2012 23:20

Como isto é uma desigualdade, temos que |5x-3| < 12 e -12 < 5x-3 < 12, daí -15 < 3x < 15 e finalmente -5 < x < 5. As operações efetuadas foram soma e multiplicação por elemento positivo, que não alteram as desigualdades.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em matemática pura
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.