• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[descobrir valor para domínio] Domínio da função

[descobrir valor para domínio] Domínio da função

Mensagempor Zebra-LNX » Sáb Jun 16, 2012 12:26

OBS: <raiz> indica o inicio da raiz, e </raiz> o final.

Qual o valor de 'a' para que o domínio da função f(x) = <raiz> 2x-a </raiz> + <raiz> x </raiz> seja > ou = a 1/2 ?

(A) 2 (B) 1 (C) 1/2 (D) – 1/2 (E) -1

Caso alguém queira ajudar, por favor poste os cálculos!
Obrigado.
Zebra-LNX
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 16, 2012 12:18
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: 8ª série
Andamento: cursando

Re: [descobrir valor para domínio] Domínio da função

Mensagempor MarceloFantini » Ter Jun 19, 2012 22:18

Basta fazer 2x-a \geq 0 \implies x \geq \frac{a}{2}. Como queremos x \geq \frac{1}{2}, segue a=1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?