• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função com mais de duas varíaveis

Função com mais de duas varíaveis

Mensagempor LucieneHolanda » Dom Jun 03, 2012 19:18

Ja tentei de todas as formas mas não consigo chegar a nenhuma das alternativas e estou com dúvidas nas que eu marquei!! São quatro questões:

1- A taxa de variação de z em relação a t quanto t= 0, sendo z=x.y+2x.y² e sabendo-se que é igual a x= e^+ e y= 2+ t²

Sugestão: use a regra de cadeia dz/dt = az/ax. dx/dt + az/ay. dy/dt

a) 2
b)3
c)-2
d)0
e) 1
Marquei a alternativa E. Séra que está certo?

2- Considerando a função, o ponto critico (0,0) é: f(x,y) = x² - y² o ponto critica fxx(0,0) . fyy(0,0) - [ fxy(0,0)]²

a) Maximo relativo
b) Minimo relativo
c) Nada se conclui
d) Maximo absoluto
e) Ponto de sela
Marquei a alternativa C. Séra que esta certo?

3- A derivada parcial de f (x,y) = 2x³+y² em relação a x é:

Estou na dúvida entre as duas respostas abaixo, qual sera a correta?

a) 6x+y²
b) df = { (x,y) . pertence R² (y diferente x²)

4- A representação grafica do dominio da função f(x,y) = x²+y²-4 <--- dentro da raiz

Disculpem qualquer coisa, sou nova aqui no forum e um tanto leiga em computador porém necessito que me ajudem, também estou a disposição para ajudar. Obrigada.
LucieneHolanda
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Abr 18, 2012 15:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Função com mais de duas varíaveis

Mensagempor Russman » Dom Jun 03, 2012 23:30

LucieneHolanda escreveu:1- A taxa de variação de z em relação a t quanto t= 0, sendo z=x.y+2x.y² e sabendo-se que é igual a x= e^+ e y= 2+ t²


Seria x=e^t ?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função com mais de duas varíaveis

Mensagempor capodeferro » Ter Jun 05, 2012 12:33

Bom dia!
Fiz um exercício semelhante ao 4 numa prova ontem.
Domínio são valores que tornam a função verdadeira.
Como x²+y²-4 está dentro de raiz, temos as condições de existência.
Na minha prova que fiz ontem eu tinha essa mesma questão, mas estava como denominador. (era 120/raiz x²+y²-4)
No meu caso, como não existe raiz quadrada de números negativos E um denominador não pode ser 0 ficou: x²+y²-4 > 0 -> x²+y² > 4.
No seu caso, como não está como denominador, a raiz pode ser = 0 tambem, pois raiz de 0 é 0. Logo x²+y²-4>=0 -> x²+y²>=4.
x²+y²>=4 indica um gráfico de circunferencia, cujo tamanho do raio é a raiz do númerodo segundo membro (4).
A circunferencia terá centro (0,0) pois não tem ninguem multiplicando x e y.
seu gráfico terá centro 0,0. E o raio será 2.
Ficará como um sol. Fechado e agregando todos os valores pra fora da circunferencia incluindo a linha da circunferencia (>=2).
Bom, tentei te ajudar, sou aluno tambem, sei fazer o exercício mas nao tenho didática.
capodeferro
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jun 05, 2012 11:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: Função com mais de duas varíaveis

Mensagempor LucieneHolanda » Ter Jun 05, 2012 15:26

capodeferro escreveu:Bom dia!
Fiz um exercício semelhante ao 4 numa prova ontem.
Domínio são valores que tornam a função verdadeira.
Como x²+y²-4 está dentro de raiz, temos as condições de existência.
Na minha prova que fiz ontem eu tinha essa mesma questão, mas estava como denominador. (era 120/raiz x²+y²-4)
No meu caso, como não existe raiz quadrada de números negativos E um denominador não pode ser 0 ficou: x²+y²-4 > 0 -> x²+y² > 4.
No seu caso, como não está como denominador, a raiz pode ser = 0 tambem, pois raiz de 0 é 0. Logo x²+y²-4>=0 -> x²+y²>=4.
x²+y²>=4 indica um gráfico de circunferencia, cujo tamanho do raio é a raiz do númerodo segundo membro (4).
A circunferencia terá centro (0,0) pois não tem ninguem multiplicando x e y.
seu gráfico terá centro 0,0. E o raio será 2.
Ficará como um sol. Fechado e agregando todos os valores pra fora da circunferencia incluindo a linha da circunferencia (>=2).
Bom, tentei te ajudar, sou aluno tambem, sei fazer o exercício mas nao tenho didática.


Imagina capodederro!! Vc explicou muito bem, entendi tudo. Pela sua resposta acredito que eu tenha errado esta questão. Ainda não tive acesso ao gabarito, aqui na UNIR os professores estão de greve. Obrigada!!!
Editado pela última vez por LucieneHolanda em Ter Jun 05, 2012 15:31, em um total de 1 vez.
LucieneHolanda
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Abr 18, 2012 15:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Função com mais de duas varíaveis

Mensagempor LucieneHolanda » Ter Jun 05, 2012 15:30

Russman escreveu:
LucieneHolanda escreveu:1- A taxa de variação de z em relação a t quanto t= 0, sendo z=x.y+2x.y² e sabendo-se que é igual a x= e^+ e y= 2+ t²


Seria x=e^t ?


Disculpe mas não entendi voce Russman. O segundo "e" é uma conjunção. E é: e^+ não e^t
LucieneHolanda
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Abr 18, 2012 15:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D