• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função modular

função modular

Mensagempor haiashi » Dom Mai 20, 2012 20:37

dados f(x)= -|x² - 6|+7 e g(x) = |x+1| eu estou tentando encontrar ;
1- as coordenadas dos pontos de interseção entre os dois gráficos f(x) e g(x)
2- quais são os intervalos onde f(x) =< g(x).
na "1" eu tentei igualar f(x) = g(x)
-|x² - 6|+7 = |x + 1|
|x + 1| + |x² - 6| = 7
daí eu fico em divergencia, não sei como proceder pra resolver essas duas questoes para que eu possa fazer o grafico. alguém poderia me ajudar?
haiashi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 20, 2012 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: função modular

Mensagempor LuizAquino » Dom Mai 20, 2012 23:38

haiashi escreveu:dados f(x)= -|x² - 6|+7 e g(x) = |x+1| eu estou tentando encontrar ;
1- as coordenadas dos pontos de interseção entre os dois gráficos f(x) e g(x)
2- quais são os intervalos onde f(x) =< g(x).


haiashi escreveu:na "1" eu tentei igualar f(x) = g(x)
-|x² - 6|+7 = |x + 1|
|x + 1| + |x² - 6| = 7
daí eu fico em divergencia, não sei como proceder pra resolver essas duas questoes para que eu possa fazer o grafico. alguém poderia me ajudar?


Aplicando a definição de módulo, temos que:

|x + 1| = \begin{cases} x + 1,\, x \geq -1 \\ -(x + 1),\, x < -1\end{cases}

\left|x^2 - 6\right| = \begin{cases} x^2 - 6,\, x \leq -\sqrt{6} \textrm{ ou } x \geq \sqrt{6}\\ -\left(x^2 - 6\right),\, -\sqrt{6} < x < \sqrt{6}\end{cases}

Sendo assim, a equação |x + 1| + \left|x^2 - 6\right| = 7 divide-se em quatro.

Equação 1) Para x\leq -\sqrt{6} .

-(x + 1) + \left(x^2 - 6\right) = 7

Equação 2) Para -\sqrt{6} < x < -1 .

-(x + 1) - \left(x^2 - 6\right) = 7

Equação 3) Para -1 \leq x < \sqrt{6} .

(x + 1) - \left(x^2 - 6\right) = 7

Equação 4) Para x \geq \sqrt{6} .

(x + 1) + \left(x^2 - 6\right) = 7

Resolvendo essas equações você pode determinar os pontos de interseção. Mas lembre-se que em cada equação o valor de x encontrado deve respeitar o intervalo no qual a equação está definida.

Em relação ao item 2), note que a inequação f(x) \leq g(x) pode ser arrumada como |x + 1| + \left|x^2 - 6\right| \geq 7 . Sendo assim, aplicando novamente a definição de módulo temos que essa inequação divide-se em quatro.

Inequação 1) Para x\leq -\sqrt{6} .

-(x + 1) + \left(x^2 - 6\right) \geq 7

Inequação 2) Para -\sqrt{6} < x < -1 .

-(x + 1) - \left(x^2 - 6\right) \geq 7

Inequação 3) Para -1 \leq x < \sqrt{6} .

(x + 1) - \left(x^2 - 6\right) \geq 7

Inequação 4) Para x \geq \sqrt{6} .

(x + 1) + \left(x^2 - 6\right) \geq 7

Resolvendo essas inequações você pode determinar os intervalos nos quais f(x) \leq g(x). Mas lembre-se que a solução de cada inequação deve estar contida no intervalo no qual a inequação está definida.

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?