• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Raíz da função] Dois métodos com resultados diferentes

[Raíz da função] Dois métodos com resultados diferentes

Mensagempor char0 » Qui Mar 15, 2012 00:36

Olá a todos. É minha primeira postagem no fórum, acabei de me registrar e parece que vou frequentá-lo bastante daqui para frente! Ingressei esse ano na faculdade de Ciências da Computação e, como a maioria sabe, esse curso possui muitas matérias que envolve matemática. Mas enfim, vou à minha dúvida:

A seguinte função y=(4-3x)/2 foi dada e é pedido para encontrar a raíz dela.
Para fazer isso posso zerar a função para encontrar o x, fazendo (4-3x)/2=0.
Com esse método obtive x=4/3. Até aí tudo bem, é o valor correto para esboçar o gráfico.
(4-3x)/2=0
4-3x=0*2
3x=4
x=4/3

Mas ainda há outro método para encontrar a raíz, utilizando a seguinte fórmula: -b/a.
Com este método, obtive um valor totalmente diferente do anterior. Veja bem:
(-(-3)/2)/(4/2)
(3/2)/(4/2)
3/2*2/4
6/8=3/4

Daí obtive o valor 3/4, que é diferente de 4/3. Fiquei bastante confuso ao esboçar o gráfico da função, mas utilizei do programa winplot para verificar como ficaria e a raíz correta é 4/3.
Estou errando em algum passo no desenvolvimento ao utilizar a fórmula -b/a?

Agradeço desde já a ajuda!
char0
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 15, 2012 00:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: [Raíz da função] Dois métodos com resultados diferentes

Mensagempor MarceloFantini » Qui Mar 15, 2012 01:01

Não pense em fórmulas, isso confunde e mostra que quando usou o raciocínio chegou à resposta correta. Essa "fórmula" parte do princípio que você use a reta como y=ax+b. Neste caso, b = 4 e a = -3. Daí, - \frac{b}{a} = - \frac{4}{-3} = \frac{4}{3}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Raíz da função] Dois métodos com resultados diferentes

Mensagempor char0 » Qui Mar 15, 2012 01:18

Perfeito! Muito obrigado, Marcelo.
char0
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 15, 2012 00:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}