por Thauan_Barcellos » Sex Out 14, 2011 16:27
Olá pessoal , estava fazendo esta questão :
(UFMG) Seja

-

, a>0 . O Valor da base a é :
a) 1/16
b) 1/8
c )2
d)10
e)16
Bom inicialmente eu tentei fazer isso :
a -

=8
1 -

= 8
Como que devo começar a fazer esta equação ?
-
Thauan_Barcellos
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 20, 2011 11:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por TheoFerraz » Sex Out 14, 2011 16:58
Sempre que voce estiver lidando com logarítimos, ao ver o seguinte termo matematico :

Leia em voz alta da seguinte forma: "Qual número 'c' que eu devo elevar a base 'a' de modo a resultar em 'b'
entao no seu caso:

Pelas regras de potenciação:
![\frac{1}{\sqrt[4]{{a}^{3}}} = 8 \frac{1}{\sqrt[4]{{a}^{3}}} = 8](/latexrender/pictures/f0cde939070b58e0b239c197664615d4.png)
![\sqrt[4]{{a}^{3}} = \frac{1}{8} \sqrt[4]{{a}^{3}} = \frac{1}{8}](/latexrender/pictures/4fe474e926bcad56dfbccf717f7a6f59.png)
ou melhor

preferi escrever assim pq agora pra passar para o outro lado ficaria :
![a = {\left(\frac{1}{8} \right)}^{4/3} = \sqrt[3]{{\left(\frac{1}{8} \right)}^{4}} = \sqrt[3]{\frac{1}{4096}} = \frac{1}{16} a = {\left(\frac{1}{8} \right)}^{4/3} = \sqrt[3]{{\left(\frac{1}{8} \right)}^{4}} = \sqrt[3]{\frac{1}{4096}} = \frac{1}{16}](/latexrender/pictures/51be3713e6e94656a16bb48e4fc57a70.png)
Simples assim.
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por Thauan_Barcellos » Sex Out 14, 2011 17:08
Dúvida respondida , obrigado pela ajuda

-
Thauan_Barcellos
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 20, 2011 11:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Logarítmica
por OtavioBonassi » Qui Jan 06, 2011 21:58
- 12 Respostas
- 8047 Exibições
- Última mensagem por OtavioBonassi

Sex Jan 07, 2011 23:42
Funções
-
- Função Logaritmica
por nessitahfl » Qui Abr 17, 2014 11:06
- 3 Respostas
- 2592 Exibições
- Última mensagem por nessitahfl

Ter Abr 22, 2014 10:48
Funções
-
- Função Logarítmica
por Carlos28 » Sex Mar 13, 2015 10:02
- 2 Respostas
- 2471 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:36
Logaritmos
-
- Função logarítmica
por zenildo » Qua Jul 15, 2015 12:26
- 1 Respostas
- 2059 Exibições
- Última mensagem por nakagumahissao

Qui Jul 16, 2015 14:37
Logaritmos
-
- Função Logarítmica - Urgente!
por Asustek27 » Dom Mar 14, 2010 19:24
- 2 Respostas
- 2691 Exibições
- Última mensagem por Asustek27

Seg Mar 15, 2010 15:25
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.