• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MMC encontrar de números grandes (250 e 450)

MMC encontrar de números grandes (250 e 450)

Mensagempor Cintra » Sáb Ago 13, 2011 14:25

Olá, nunca fui boa em matemática. Agora voltei a estudar e tenho alguns problemas para resolver.
Já entendi como encontrar o MMC, mas como faço para encontrar se tenho números muito grandes, Exp. 250, 450?
Se fosse o 15 = 3,5, certo?
Se fosse o 30 = 5,6, certo?
E de 250? 450? Começo por onde?
Vi que a resposta é 2250.
Pensei se a resposta é 2250 então devo encontrar o MMC pegando os 250 e 450 e dividindo por um número que o resultado seja inteiro.
Peguei 250 e dividi por 5 o MMC = 5, 50
Peguei 450 e dividi por 5 o MMC= = 5, 90
Peguei o 5 x 50 x 90 = 2250. Cheguei no resultado. Mas.... meu raciocínio esta certo? É assim que devo fazer?
*-)
Muito obrigada.
Cintra
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Ago 13, 2011 13:58
Formação Escolar: GRADUAÇÃO
Área/Curso: adm
Andamento: formado

Re: MMC encontrar de números grandes (250 e 450)

Mensagempor Caradoc » Sáb Ago 13, 2011 16:25

Você pode fazer o processo da decomposição simultânea.

250  450  | 2
125  225  | 3
125  75    | 3
125  25    | 5
 25  5      | 5
  5   1      | 5
  1   1    

Coloque os números lado a lado e vá dividindo ambos pelos números primos (2,3,5,7,11..).
Caso uma das divisões não seja inteira, apenas copie tal número na próxima linha. Caso ambas as divisões não sejam inteiras, passe para o próximo primo.
No final, o mmc será o produto dos fatores primos.

Nesse caso, 2*3*3*5*5*5 = 2250

Outra maneira de encontrar, é listar os múltiplos de ambos os números, até achar o menor múltiplo comum:

250 => 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750..
450 => 450, 900, 1350, 1800, 2250, 2700...

Como visto, o menor múltiplo comum entre 250 e 450 é 2250.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: MMC encontrar de números grandes (250 e 450)

Mensagempor Cintra » Sáb Ago 13, 2011 16:50

Muito obrigada Caradoc!!!!
:)
Cintra
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Ago 13, 2011 13:58
Formação Escolar: GRADUAÇÃO
Área/Curso: adm
Andamento: formado

Re: MMC encontrar de números grandes (250 e 450)

Mensagempor Gustavo R » Sáb Ago 13, 2011 17:21

Na verdade ñ é assim que se procede, Cintra. Isto que vc fez nem possui uma forma coerente que nos leve a desenvolver uma lógica. E 5 x 50 x 90 = 22500 e ñ 2250 que é a resposta correta. Mas ñ se preucupe quanto ao seu déficit em matemática, o importante é que vc comece a praticá-la bastante para que vc possa suprir suas dúvidas.Se vale uma dica, nunca passe para a próxima matéria antes de ter entendido bem a primeira. Bom vamos lá, o entendimento é simples: Para calcular o mínimo múltiplo comum entre dois ou mais números, devemos tomá-los por uma regrinha, sendo que independente da extenção do número, procedemos da mesma forma. Podemos calculá-lo de duas maneiras:

1) Pelo método da decomposição em fatores primos, fatoramos os números em questão que no caso são 250 e 450, separadamente até obtermos de cada um um produto de fatores PRIMOS:

a)
250 = 2 \times 5 \times 5 \times 5 = {2}^{1}\times {5}^{3}

450 = 2 \times 3 \times 3 \times 5 \times 5 = {2}^{1}\times {3}^{2}\times {5}^{2}



b) em seguida multiplicamos os fatores comuns e os não comuns dos numeros em questão, tomando os fatores com os MAIORES expoentes: {2}^{1}\times {3}^{2}\times {5}^{3}= 2250


2) e a segunda maneira de se calcular o mmc é juntar todos os números separando-os por vírgula e dividí-los por fatores primos ( menores natutais possíveis); quando chegar ao ponto em que um número ñ dividi pelo mesmo fator que dividi o outro, repita-o na linha de baixo até que ele divida pelo mesmo fator que o outro e vice-versa. Quando os números chegarem na decomposição final com o fator 1, a fatoração estará terminada, e assim basta multiplicar os fatoter primos da direita e obteremos o mínimo múltiplo comum dos números fatorados. A esse método chamamos de decomposição simultânea.

250, 450 I 2
125, 225 I 3
125,..75 I 3
125,..25 I 5
25,.....5 I 5
5,......1 I 5/ \rightarrow {2}^{1}\times {3}^{2}\times {5}^{3} = 2250
1,......1 I
Gustavo R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Ago 12, 2011 19:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}