• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Exponencial

Função Exponencial

Mensagempor [icaro] » Dom Abr 17, 2011 12:44

A lei N(t)=a*{2}^{bt} representa o crescimento de uma pop de bacterias. Neste caso, N(t) é o numero de bacterias no instante t (com t em horas) e a e b são constantes reais. Sabendo-se que no inicio da observação havia 3000 bacterias e que apos duas horas havia 4800 bacterias, determine:

a) os valores das constantes a e b
b) o numero de bacterias existentes apos meia hora
c) o tempo minimo necessario para que o numero de bacterias seja maior que 3 milhões
[icaro]
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mar 09, 2011 00:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências e tecnologia
Andamento: cursando

Re: Função Exponencial

Mensagempor FilipeCaceres » Dom Abr 17, 2011 13:54

Inicialmente temos,
3000=a.2^{b.0}
a=3000

Depois temos,
4800=3000.2^{2b}

2^{2b}=\frac{48}{30}=\frac{8}{5}=1,6

Aplicando log_2 dos dois lados temos,
log_2 2^{2b}=log_2 1,6
2b log_2 =log_2 1,6
b=\frac{1}{2}.log_2 1,6
b=log_2 (1,6)^{\frac{1}{2}}

Logo temos,
N(t)3000.2^{t.log_2(1,6)^{\frac{1}{2}}}
N(t)3000.2^{log_2(1,6)^{\frac{t}{2}}}

Sabendo que,
a^{log_a b}=b

Temos,
N(t)=3000.(1,6)^{\frac{t}{2}}

a)
a=3000
b=log_2 (1,6)^{\frac{1}{2}}

Agora tente fazer as letras B e C.

Se não conseguiur poste sua dúvida.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.