• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda com problema

ajuda com problema

Mensagempor Andersonborges » Qui Mar 03, 2011 00:21

7.a)Se você tivesse uma maquina que pudesse registrar a população mundial continuamente, você esperaria por um gráfico da população versus o tempo que fosse uma curva continua(não-interrompida)? Explique o que poderia interromper essa curva.

b) suponha que um paciente de um hospital receba uma injeção de um anti-biotico a cada 8 horas e que entre as injeções a concentração C de antibiótico na corrente sanguínea decresce a medida que ele é absorvido pelos tecidos. Como deveria ser o gráfico de C versus o tempo decorrido?



tem que escrever esses dois problemas... a B por grafico eh tranquilo,,, mais nao sei escrevela!
Andersonborges
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Fev 24, 2011 02:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia eletrica
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}