• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função dicas.

Função dicas.

Mensagempor gustavoluiss » Dom Fev 20, 2011 15:16

Oscar arremessa uma bola de basquete cujo centro segue uma trajetória plana vertical de equação y = - 1/7x² + 8/7x + 2 , na qual os valores de x e y são dados em metros.
Oscar acerta o arremesso e o centro da bola passa pelo centro da cesta, que está a 3 m de altura. Determine a distância do centro da cesta ao eixo y.


Se a altura é 3m, significa que y = 3.

y = - 1/7x² + 8/7x + 2
3 = - 1/7x² + 8/7x + 2
Multiplicando a equação por 7:
3.7 = (-1 . 7 / 7).x² + (8 . 7 / 7).x + 2 . 7
21 = -x² + 8x + 14
x² - 8x + 21 -14 = 0
x² - 8x + 7 = 0

Resolvendo pelo método da Soma e Produto:
Soma das raízes = - b = - ( - 8) = 8
Produto das raízes = c = 7

Então as raízes são:
x' = 1
x" = 7

Como no ponto em que x = 1 a bola ainda está subindo e no ponto
x = 7 a bola está descendo, a distância do centro da cesta ao eixo y é de 7 m.


TEM DUAS RESPOSTAS PQ A DE 7 METROS ESTÁ CERTA ??

A DE 1 METRO SERIA DA ALTURA DO GAROTO PRA ALTURA DA CESTA ??
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Função dicas.

Mensagempor LuizAquino » Dom Fev 20, 2011 16:19

gustavoluiss escreveu:Tem duas respostas. Por que a de 7 metros está certa??

Veja a figura abaixo:
bola-basquete.png


Ao subir, a bola atinge os 3 m quando x=1. Mas, estamos interessados no momento em que a bola descer e atingir os 3 m. Isto é, quando x=7.

gustavoluiss escreveu:A de 1 metro seria da altura do garoto pra altura da cesta??

Não, como você pode ver na figura. Considerando que o garoto está na origem do sistema de eixos, quando a bola arremessada percorrer uma distância horizontal de 1 m, a altura dela será de 3 m.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}