• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função com 2 variaveis misturadas: dúvida exerc. Leithold.

Função com 2 variaveis misturadas: dúvida exerc. Leithold.

Mensagempor victordhn » Qua Fev 16, 2011 17:01

Fala ae galera, no livro do leithold, ele pede para esboçar o grafico desta função, porém eu mal consigo separar x e y para substituir valores, gostaria da ajuda de vocês para tornar essa função mais clara, onde eu possa substituir x e axar respectivo y, e montar o grafico.

Abaixo a função:
x^4-5x^2y+4y^2=0

Agredeço a ajuda de quem puder.

Att
Victor Dahan
victordhn
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Fev 14, 2011 19:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Engenharia Química
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.