• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema da torneira

Problema da torneira

Mensagempor Lorettto » Seg Dez 13, 2010 01:34

Como faz esse ? Uma torneira enche um depósito d'água em 1/14 da hora enquanto uma válvula pode esvaziá-la em 1/19 da hora. Trabalhando juntas, em quanto tempo o líquido contido no depósito atingirá seus 5//6 ?
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Problema da torneira

Mensagempor PedroSantos » Seg Dez 13, 2010 04:05

Vejamos, a torneira enche o depósito e a valvula esvazia-o.Logo

\frac{1}{14}-\frac{1}{19}

Pode-se verificar que \frac{1}{14} é maior que \frac{1}{19} . Conclui-se que por cada unidade de tempo o depósito enche na diferença entre a torneira e a valvula.Seja n a quantidade de tempo.

n(\frac{1}{14}-\frac{1}{19})=\frac{5}{6}


Julgo que é assim, pois (conforme o enunciado) a torneira enche em 1/14 de hora (4 min 17seg) e a valvula esvazia em 1/19 de hora (3 min 10seg). Nesta perspectiva a valvula esvazia mais depressa do que a torneira enche e assim o deposito nunca chegaria a estar cheio!
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Problema da torneira

Mensagempor Lorettto » Seg Dez 13, 2010 14:33

Obrigado....mas eu já tinha conseguido a resolução dele bem depois que postei aqui. Obrigado assim mesmo pela força, abraço !! ;)
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}