• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funçao de 2° Grau - Exercicios

Funçao de 2° Grau - Exercicios

Mensagempor Felipe_95 » Seg Out 04, 2010 20:47

Olá pessoal,
vou ter uma prova sexta feira, e preciso de ajuda!
Alguem pode me passar exercicios de função de 2° grau, oque pode cair em prova etc... to aprendendo isso...
Estudo do sinal e inequação do 2° grau
Estudar o sinal de cada função
f(x) = -3x² + 2x + 1
[...] fazer a reta real, por as 2 raizes, e escrever as soluções
f(x) = 0 se x ....
f(x) < 0 se ...
f(x) >0 se x...
E então vem inequação de 2° grau
y = x² - 3x + 2 \geq 0
entao resolvo com bhaskara, achando as 2 raizes, fazendo o "varalzinho" na parte que é pedido, e escrevendo a solução S=[xer/x<....>..]
Entao pessoal, é +/- isso que estou aprendendo nessa parte, sera que algum pode me passar uns exercicios, doqe pode cair de mais dificl na prova, dicas, etc... ?
vlw ae
Felipe_95
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Out 04, 2010 20:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino médio
Andamento: cursando

Re: Funçao de 2° Grau - Exercicios

Mensagempor MarceloFantini » Seg Out 04, 2010 22:06

Estudar o sinal é apenas verificar onde a função se anula, e os pontos onde ela é negativa ou positiva. Veja:

f(x) = -3x^2 +2x +1 = -(x-1)(3x+1)

Portanto as raízes são x_1 = -1 e x_2 = 1, ou seja, f(x) se anula quando x for 1 ou \frac{-1}{3}.

Se você já tiver um certo conhecimento sobre funções do segundo grau, sabe que é uma parábola, e como o coeficiente do x^2 é negativo que é uma parábola com a boca para baixo. Assim, entre as raízes a função é positiva, e fora desse intervalo é negativa.

A segunda função é basicamente o mesmo método, mas pare e pense: quando você tem y = ax^2 +bx +c, com a \neq 0, o que isso quer dizer? Você está tomando os pontos da curva dada. Se y > ax^2 +bx +c, você está tomando os pontos ACIMA da curva, sem incluí-los (incluindo-os seria com um maior ou igual). Analogamente, y < ax^2 +bx +c quer dizer os pontos abaixo da curva.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em matemática pura
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.