• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Oferta e Demanda

Oferta e Demanda

Mensagempor DaniAs » Qua Set 15, 2010 10:35

estou fazendo ua apostila de matematica e gostaria da ajuda de vocês, pois tem umas questões que não estou conseguindo fazer!
agradeço desde já :)

2 . Numa sapataria, 120 sandálias de um determinado tipo eram vendidas por
semana quando o seu preço era R$ 10,00. Hoje que o preço é R$ 15,00são
vendidas apenas 80 sandálias por semana. Qual é a equação de demanda,
admitindo-a linear?
Resposta:
{10a + b = 120(-1) ------------------------> 10 . (-8) + b = 120
{15a + b = 80 L------------------------------> - 80 + b = 120
-10a - b = - 120 L--------------------------->b = 120 + 80 => b= 200
15a + b = 80
5a = -40 => a= -8
P(q)= -8q + 200,00

3 . O preço de uma garrafa de vinho era R$ 20,00. A esse preço eram
vendidas 50 unidades por dia. Tendo o preço baixado para R$ 15,00 , o
número de unidades vendidas por dia passou para 75. Admitindo linear a
curva de demanda, obtenha a sua equação e faça seu gráfico cartesiano.
Resposta:
{20a + b = 50 (-1) ------------------------> 20 . (-5) + b = 50
{15a + b = 75 L----------------------------> -100 + b = 50
-20a - b = -50 L---------------------------> b = 50 + 100 => b= 150
15a + b = 75
-5a = 25 => a= -5
P(q)= -5q + 150,00

4 . Numa relojoaria, quando o preço é R$ 100,00 , nenhum relógio de pulso é
vendido, mas 20 relógios de pulso são vendidos quando o seu preço é R$
60,00. Qual é a equação de demanda, admitindo-a linear?
Resposta:
{100 = 0a + b -----------------------------> 100 = 0 . (-2) + b
{60 = 20a + b (-1) L----------------------> b = 100
100 = 0a + b
-60 = -20a - b
40 = -20a => a= -2
P(q)= -2q + 100,00

5. Por serem considerados necessários à segurança nacional, são comprados
anualmente 50 geradores de serviço pesado, independentemente do preço.
Qual é a equação de demanda ? Faça o seu gráfico cartesiano
Resposta:
não sei como faço!


Mandarei as outras perguntas apos tentar fazer.
DaniAs
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 14, 2010 18:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D