• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações

Relações

Mensagempor Rose » Qui Mai 15, 2008 14:41

OLá!!

Não estou conseguindo resolver estas questões. Não estou conseguindo interpretar os encunciados. Não sei como se faz para resolver. Se alguem puder me mostrar como se interpreta e como devo resolve-las! Desde já agradeço a ajuda

1)Represente geometricamente as seguintes relações no plano cartesiano:

R1 = { (x,y) ? R x R / |X| + | Y| ? 1}
R2 = { (x,y) ? R x R |/ X² + Y² ? 1}
R3 = { (x,y) ? R x R / Max { |X| , | Y| ? 1}

2) Determine o domínio e imagem das relações definidas acima e prove analiticamente que R1 está contido R2.
Algumas dessas relações e simétrica, reflexiva, ou transitiva?

3) Determine a imagem da relação R definida por
R = { (x,y) ? R x R | y| ? x² - 4x +7}
e represente geometricamente R (elevado na menos 1). Dê a imagem de R (elevado na menos 1.
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: Relações

Mensagempor admin » Qui Mai 15, 2008 16:38

Olá Rose, seja bem-vinda!

Eis uma tentativa de auxílio na interpretação da notação utilizada, para que você possa estudar os assuntos relacionados e resolver os exercícios.

(x,y) é a representação de um par ordenado, um ponto genérico no plano cartesiano.
A relação define qual regra estes pontos devem obedecer.
Este símbolo "|" significa "tal que".
A expressão que vem logo após "|" é a condição à qual todos os pontos relacionados devem satisfazer.

E lembrando a definição de módulo:
|\alpha| = \left\{
\begin{matrix}
\alpha & se & \alpha \geq 0 \\
-\alpha & se & \alpha < 0 \\
\end{matrix}
\right.

Ou seja, o resultado do módulo é sempre positivo.

A notação RXR representa o plano cartesiano em duas dimensões (R^2).
De modo que (x, y) \in RXR significa um ponto do plano.

Exemplo de leitura da R_1:
A relação R_1 determina todos os pontos (x,y) do plano cartesiano, tais que suas coordenadas x e y atendem à condição |x|+|y| \leq 1.
Ou seja, R_1 delimita uma certa região do plano.

Analogamente, você pode fazer a leitura para as outras relações.
Uma vez entendida a idéia dita pela relação, sugiro como segundo passo, um estudo complementar dos seguintes assuntos:
Inequações do primeiro e segundo grau, módulo e inequações modulares, para que você possa compreender e obter as regiões determinadas.
Somente depois, pense no exercício 2. Enfim, estude função inversa, para o exercício 3.

Espero ter ajudado.
Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59