por Mimizinha » Ter Abr 01, 2008 10:27
Um produto deve ser colocado no mercado a um preço de venda mínimo de R$5,00. O fabricante acredita que a cada aumento no preço do produto, a partir do preço mínimo, ele perca consumidor a uma taxa de 1000 para cada real aumentado. O mercado estimadoara o preço mínimo e de 10.000 unidades. A quantidade mínima que interessa para os fornecedores e 1000 unidades, pois abaixo disso há outras atividades mais rentáveis disponíveis. Contruir um modelo funcional para a quantidade vendida do produto a cada nível de preço
Por favor me ajude a resolver esse exercicio. Não faço a minima ideia nem de como começar
Obrigada
-
Mimizinha
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Qua Mar 19, 2008 13:50
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Abr 01, 2008 11:38
Olá.
Comece pensando na quantidade vendida como uma função do preço.
Durante sua reflexão, veja como a quantidade vendida começa e como ela varia conforme o preço aumenta.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Mimizinha » Ter Abr 01, 2008 15:13
ainda não consegui chegar a esse raciocionio que vc disse
-
Mimizinha
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Qua Mar 19, 2008 13:50
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Abr 01, 2008 23:59
Olá.
Então, tente identificar no problema uma função de 1º grau.
Ou seja, estando

em função de

, identifique

e

, assim como os parâmetros

e

:

-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [idades] ajuda na resolução de exercicio
por Mimizinha » Qui Mar 20, 2008 14:14
- 7 Respostas
- 6901 Exibições
- Última mensagem por admin

Qua Mar 26, 2008 11:59
Álgebra Elementar
-
- [Cálculo I] Ajuda na resolução de um exercício
por dehcalegari » Qui Abr 04, 2013 09:24
- 1 Respostas
- 1927 Exibições
- Última mensagem por young_jedi

Qui Abr 04, 2013 19:48
Cálculo: Limites, Derivadas e Integrais
-
- Exercício de função para ajuda na resolução.
por MARCION » Seg Dez 15, 2014 13:31
- 3 Respostas
- 2144 Exibições
- Última mensagem por Russman

Seg Dez 15, 2014 19:56
Funções
-
- Resolução de exercício
por Flavia Araujo » Qui Mai 21, 2009 14:38
- 28 Respostas
- 30979 Exibições
- Última mensagem por Neperiano

Ter Fev 23, 2010 13:50
Progressões
-
- resolução de exercício
por jose henrique » Sex Nov 12, 2010 21:20
- 2 Respostas
- 2282 Exibições
- Última mensagem por MarceloFantini

Sex Nov 12, 2010 22:58
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.