por bryelfc » Qua Mai 25, 2016 13:20
Sabe-se que a produção de cestos de uma comunidade indígena é comercializada por uma cooperativa, cujo lucro, em milhares de reais, resultante da venda da produção de x unidades, é estimado pela função f(x) = log2(4 + x) + b , sendo b uma constante real, e que não havendo produção não haverá lucro.
Com base nessa informação, determine o lucro médio na produção de cada unidade quando o lucro for igual a R$5000,00.
-
bryelfc
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 25, 2016 13:11
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por nakagumahissao » Qui Mai 26, 2016 02:24
Sabe-se que a produção de cestos de uma comunidade indígena é comercializada por uma cooperativa, cujo lucro, em milhares de reais, resultante da venda da produção de x unidades, é estimado pela função f(x) = log2(4 + x) + b , sendo b uma constante real, e que não havendo produção não haverá lucro.
Com base nessa informação, determine o lucro médio na produção de cada unidade quando o lucro for igual a R$5000,00.
Sendo que b é uma constante real e que não havendo produção não haverá lucro, então:


Logo:

Para se ter um lucro de R$ 5.000,00 teremos:



Esta resposta é muito estranha. Me dá a impressão que a questão está formulada de forma errada ou houve erro de digitação. De qualquer forma, este resultado diz que para se ter um lucro de 5000 reais, seriam necessários a produção de um número elevadíssimo de cestas (várias vidas de várias pessoas para se obter toda essa produção?), por isso causa estranheza.
O lucro médio será:


Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por bryelfc » Qui Mai 26, 2016 02:48
Pow nem fala cara, bati muito a cabeça achando que eu tava errando alguma coisa. A prova é da bahiana de medicina aqui em Salvador, e essa faculdade tem cada questão bizarra na fase aberta. No mais valeu, seu resultado bateu com o meu
-
bryelfc
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 25, 2016 13:11
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Função Exponencial] Questão 25 da Bahiana de Medicina 2013
por Bruno Hitner » Ter Abr 02, 2013 00:47
- 4 Respostas
- 3392 Exibições
- Última mensagem por Bruno Hitner

Dom Abr 07, 2013 01:09
Funções
-
- Função Logarítmica
por OtavioBonassi » Qui Jan 06, 2011 21:58
- 12 Respostas
- 7664 Exibições
- Última mensagem por OtavioBonassi

Sex Jan 07, 2011 23:42
Funções
-
- Função Logaritmica
por nessitahfl » Qui Abr 17, 2014 11:06
- 3 Respostas
- 2458 Exibições
- Última mensagem por nessitahfl

Ter Abr 22, 2014 10:48
Funções
-
- Função Logarítmica
por Carlos28 » Sex Mar 13, 2015 10:02
- 2 Respostas
- 2357 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:36
Logaritmos
-
- Função logarítmica
por zenildo » Qua Jul 15, 2015 12:26
- 1 Respostas
- 1973 Exibições
- Última mensagem por nakagumahissao

Qui Jul 16, 2015 14:37
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.