• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função quadrática

Função quadrática

Mensagempor Ananda » Sex Mar 28, 2008 16:00

Boa tarde!

Eis o exercício:

Ache os pontos comuns aos gráficos das funções f: [1; +\infty[ \,\rightarrow [-1;+\infty[ definida por f(x)= \frac{x^2}{4}-\frac{x}{2}-\frac{3}{4} e sua inversa f^{-1}.

Bom, tive que procurar na internet como achar a função inversa de uma função quadrática e cheguei a:

f^{-1}(x)=1+2\,\sqrt[]{1+x}

Daí igualei as duas funções, mas não consegui resolver por causa do x dentro da raiz.
Elevei os dois lados ao quadrado, mas também não obtive sucesso.

x^2-2x-3=4(2\,\sqrt[]{1+x})

A resposta é: (3+2\,\sqrt[]{3}\,;\, 3+2\,\sqrt[]{3})


Grata desde já!

Excelente final de semana!

Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Função quadrática

Mensagempor admin » Sex Mar 28, 2008 19:32

Olá Ananda, boa noite!

De fato, a função inversa que você obteve está correta.

Mas, nem é necessário obtê-la se você utilizar uma propriedade da função inversa (que pode ser provada):
Os gráficos cartesianos de f e f^{-1} são simétricos em relação à bissetriz dos quadrantes 1 e 3 do plano cartesiano.

Primeiro, pense sobre esta propriedade e tente utilizá-la na resolução.

Outras dicas para suas reflexões:

1) atualize os estudos sobre domínio e imagem de uma função e sua inversa.

2) Considere um caso mais simples. Desenhe os gráficos da parábola y=x^2 e sua função inversa.
Calcule e observe o ponto comum. Relacione com a propriedade citada.

Bons estudos! Vamos conversando...
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Função quadrática

Mensagempor Ananda » Sex Mar 28, 2008 19:48

Hmmm...
Bom, pensei nisso da simetria dos gráficos sim, mas depois de vê-los em um programa. Vi que o ponto de intersecção é no primeiro quadrante.
Ah sim, sei que o domínio da função é o contradomínio da inversa, e vice-versa!
Mas mesmo com essas informações, ainda não consegui encontrar minha "luz" no exercício!
Mas bem, farei o que me falaste e amanhã te digo o obtido!

Grata!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Função quadrática

Mensagempor admin » Sex Mar 28, 2008 19:58

OK, a dica 1 foi apenas com o intuito de revisar.

Eu não comentei intencionalmente um pequeno detalhe que resolve o problema, mas você vai perceber como conseqüência da propriedade. Acho que será sua "luz".

Até amanhã!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Função quadrática

Mensagempor Ananda » Sex Mar 28, 2008 21:03

Eu consegui!
Ai que felicidade! rs
Como o domínio de uma é a imagem da outra, na interseção f(x) será igual a x!

Grata!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Função quadrática

Mensagempor Ananda » Sex Mar 28, 2008 21:06

Ah, e daí só considero a possibilidade positiva, porque não há raiz quadrada negativa!
Daí só resta o primeiro quadrante!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Função quadrática

Mensagempor admin » Sex Mar 28, 2008 21:25

Que ótimo, eu também fico feliz!

A propriedade diz, em outras palavras, que o eixo de simetria entre uma função e sua inversa é a reta y=x.
Ou seja, como as funções são simétricas, um ponto em comum estará necessariamente sobre a bissetriz y=x.

Até mais.
Bom final de semana!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D