• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇÕES] PODEM ME AJUDAR POR FAVOR?

[FUNÇÕES] PODEM ME AJUDAR POR FAVOR?

Mensagempor Miya » Seg Abr 06, 2015 09:11

Olá
eu estou tentando resolver
Seja f a função de IR em IR definida por f(x)= x² - 3x+4 . Calcular:
c) 1-?¯2

ai fica assim:
f(1-?¯2) = (1-?¯2)²-3(1-?¯2)+4
ai a raíz do dois corta com o dois elevado né,fica assim:
1-2-3(1-?¯2)+4
ai eu multiplico aquele 3 pelo parentesis né? fica assim:
1-2- 3-3?¯2+4
??


não sei mais resolver a partir daí =/ podem me ajudar?
Miya
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qui Mar 05, 2015 16:27
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [FUNÇÕES] PODEM ME AJUDAR POR FAVOR?

Mensagempor adauto martins » Seg Abr 06, 2015 13:06

f(1-\sqrt[]{2})={(1-\sqrt[]{2}})^{2}-3(1-\sqrt[]{2})+4=(1+2\sqrt[]{2}+2)-3+3\sqrt[]{2}+4=4+5\sqrt[]{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.