• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como reconhecer uma função

como reconhecer uma função

Mensagempor Erick Gabriel » Qui Abr 02, 2015 14:11

x f(x) g(x) h(x)
0 25 20,8 16.000
1 20 27,6 10.000
2 14 34,4 5.400
3 7 21,2 3.240
como fazer para descobrir quais destas funções é afim ou exponencial, me ajudem!
Não sei se começo pelo grafico, esses valores de f(x) por exemplo já são os valores de y prontos para o grafico ou preciso substituir o x pelos valores de x? realmente não sei como começar.
Erick Gabriel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 02, 2015 14:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.